Станислав Улам - Приключения математика

Тут можно читать онлайн Станислав Улам - Приключения математика - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство Научно-издательский центр «Регулярная и хаотическая динамика», год 2001. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Приключения математика
  • Автор:
  • Жанр:
  • Издательство:
    Научно-издательский центр «Регулярная и хаотическая динамика»
  • Год:
    2001
  • Город:
    Ижевск
  • ISBN:
    5-93972-084-6
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Станислав Улам - Приключения математика краткое содержание

Приключения математика - описание и краткое содержание, автор Станислав Улам, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.).
Для широкого круга читателей — от студентов до специалистов-математиков и историков науки.
S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.

Приключения математика - читать онлайн бесплатно полную версию (весь текст целиком)

Приключения математика - читать книгу онлайн бесплатно, автор Станислав Улам
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

На некоторых своих лекциях фон Нейман, бывало, детально рассматривал какие-то наиболее легкие моменты и лишь вскользь, словно делая комментарий, останавливался на сложных местах, что озадачивало его студентов, однако он всегда демонстрировал фантастическую и в какой-то степени пророческую широту интересов в математике и ее приложениях и, в то же время, объективность, которой я несказанно восхищался.

Фон Нейман был блестящим, изобретательным, действенным математиком, с потрясающей широты кругом научных интересов, которые простирались и за пределы математики. Он знал о своем техническом таланте. Его виртуозность в понимании сложнейших рассуждений и интуиция были развиты в высшей степени; и тем не менее, ему было далеко до абсолютной самоуверенности. Возможно, ему казалось, что он не обладает способностью интуитивно предугадывать новые истины на самых высших уровнях или даром к мнимоиррациональному пониманию доказательств и формулировок новых теорем. Мне очень трудно это понять. Может быть, это объяснялось тем, что пару раз его опередил или даже превзошел кто-то другой. К примеру, его разочаровало то, что он не первым решил теоремы Геделя о неполноте. Ему это было больше чем под силу, и наедине с самим собой он допускал возможность того, что Гильберт избрал ошибочный ход решения. Но мысли эти шли вразрез с общепринятым представлением, которое бытовало в то время. Другой пример — доказательство Дж. Д. Биркгофом эргодической теоремы. Его доказательство было более убедительным, более интересным и более независимым по сравнению с доказательством Джонни.

Во время своего пребывания в Принстоне я видел, что у Джонни были какие-то сомнения относительно того, что он делал. Он был погружен в новую работу, которая касалась исследования непрерывных геометрий и теории классов операторов в гильбертовом пространстве. Сам я не особо интересовался задачами, связанными со свойствами гильбертова пространства. Джонни, как я видел, так же не был до конца уверен в важности этой работы. И лишь когда, время от времени, он находил какие-то оригинальные, технически изящные приемы или новый подход, он действительно казался возбужденным, или освободившимся от внутренних сомнений.

Тогда же, уже не в первый раз в своей жизни, он начал обдумывать задачи, не связанные с чистой математикой (в 1924 году он написал свою знаменитую книгу по математическим основам квантовой теории). Сейчас он больше думал о классических задачах физики. Например, он изучал проблемы турбулентности в гидродинамике. Он исследовал элементы непрерывных геометрий, которые не являются тем, что обычно принято считать «точками» в евклидовом пространстве; это, так сказать, «бесточечная геометрия» — название, послужившее объектом для многочисленных нехитрых шуток.

Снова и снова он возвращался к возможности пересмотра логики квантовой теории, послужившей темой лекции, прочитанной им на семинаре в Варшаве. В Принстоне он часто работал над этой темой. И я, слушая его разговоры, видя и чувствуя его нерешительность, сам испытывал сомнение, потому что не было никакой очевидной возможности получить хоть какое-нибудь экспериментальное подтверждение — это был вопрос логики в чистом виде. Меня же никогда особо не интересовали чисто «грамматические» подходы. Вещи не затруднительные, которые легко представить на листе бумаги, кажутся мне менее интересными, чем вещи, имеющие под собой более реальную физическую основу или же основу абстрактную, но все же каким-то образом более «осязаемую». Должен признать, что, конечно, в некоторых случаях формализм как таковой, бесспорно, имеет огромную ценность — к примеру, он важен в методе, а точнее в системе обозначения диаграмм Фейнмана в физике. Идея здесь чисто типографическая, и сама по себе она не вносит ничего осязаемого в физическую картину, но, тем не менее, если система обозначений умело разработана, она может подтолкнуть ваши мысли в те направления, которые, возможно, окажутся полезными, новыми или даже ключевыми. Помимо этого существует (и является чрезвычайно важной) магия «алгоритмов», то есть символизм в математике. В самом вычислении раскрывается все чудо этой магии. Различные преобразования, генерирующие функции и другие тому подобные вещи происходят в математических приложениях каким-то почти сверхъестественным образом.

Фон Нейман был хозяином и чуть-чуть рабом своего собственного метода. Когда он видел, что где-то можно что-нибудь сделать, то позволял себе отклоняться от главной темы. Лично я считаю, что некоторые из его математических работ, например, по классам операторов или по квазипериодическим функциям, очень интересны с технической стороны, но, по-моему, не имеют решающего значения; однако он не мог удержаться от того, чтобы не заняться ими, так как знал, что это ему по силам.

Сколь огромно значение привычки! Она может в значительной степени определить характеристики или же природу самого мозга. Привычки влияют и, возможно, в существенной мере определяют выбор хода мыслей в работе человека. Стоит им укорениться (это, по моему мнению, может произойти очень быстро — иногда достаточно лишь несколько раз поддаться искушению), соответствующие «связи», «программы», «подпрограммы» тут же закрепляются. У фон Неймана была привычка держаться линии наименьшего сопротивления. Конечно, он, обладая сильным умом, мог быстро преодолеть все незначительные препятствия или трудности и идти дальше. Но если трудность с самого начала была слишком велика, он не бился головой о стену и — как я однажды выразился в разговоре об этом со Шрейером — не кружил вокруг крепости, постукивая то тут, то там в надежде найти наиболее слабое место и попытаться совершить прорыв. Он обыкновенно переключался на другую задачу. В целом, судя по привычкам, влияющим на работу Джонни, я бы назвал его скорее реалистом, чем оптимистом. Джонни всегда был трудоголиком; он обладал огромной энергией и выносливостью, скрывающейся за не слишком волевой наружностью. Каждый день он начинал работать еще до завтрака. И даже во время званых вечеров в своем доме он мог вдруг оставить гостей, отлучиться где-нибудь на полчаса, чтобы записать что-то, пришедшее ему на ум.

Должно быть, жить с ним было не так просто, в том смысле, что он не уделял достаточно внимания простым житейским делам.

Некоторые люди, особенно женщины, считали, что он недостаточно прислушивается к субъективным, личным ощущениям, и что, возможно, он несколько недоразвит в эмоциональном отношении. Однако во время наших бесед я чувствовал, что только некоторая застенчивость не позволяла ему открыто говорить на подобные темы. Такая внешняя робость — не редкое явление среди математиков. «Нематематики» часто упрекают нас в этом и, может быть, обижаются на эту кажущуюся эмоциональную бесчувственность и чрезмерную склонность к рациональному, особенно в отношении к делам мирским, с наукой не связанным. Фон Нейман же настолько ушел в математику, физику и другую научную работу, не говоря уже о становящейся все более насыщенной деятельности в качестве консультанта множества проектов, что он, вероятно, не мог быть слишком внимательным, «нормальным» мужем. Это, возможно, частично объясняло его не слишком гладкую семейную жизнь.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Станислав Улам читать все книги автора по порядку

Станислав Улам - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Приключения математика отзывы


Отзывы читателей о книге Приключения математика, автор: Станислав Улам. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x