Игорь Апокин - Чарльз Бэбидж 1791—1871

Тут можно читать онлайн Игорь Апокин - Чарльз Бэбидж 1791—1871 - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство Наука, год 1981. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Игорь Апокин - Чарльз Бэбидж 1791—1871 краткое содержание

Чарльз Бэбидж 1791—1871 - описание и краткое содержание, автор Игорь Апокин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Чарльз Бэбидж — английский математик и экономист, известен попыткой создания вычислительной машины с программным управлением, принципы которой на целое столетие опередили науку и технику того времени и только в наше время нашли воплощение в ЭВМ. Математические исследования Ч. Бэбиджа способствовали зарождению английской алгебраической школы. Его экономические работы получили высокую оценку К. Маркса. Таблицами Бэбиджа пользовались страховые общества Европы.
Для широкого круга читателей, интересующихся историей науки.

Чарльз Бэбидж 1791—1871 - читать онлайн бесплатно полную версию (весь текст целиком)

Чарльз Бэбидж 1791—1871 - читать книгу онлайн бесплатно, автор Игорь Апокин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В то время в Париже были две вычислительные мастерские, в которых производили одни и те же расчеты для взаимной проверки. Прони реорганизовал все расчетное дело. Все вычислители из двух мастерских, к которым он прибавил еще ряд нанятых им работников, были разделены на три группы. В первую группу входило пять-шесть крупных математиков, которые исследовали различные аналитические выражения, чтобы подобрать функцию, удобную для числовых расчетов. Естественно, подобранная функция должна была наилучшим образом соответствовать той функции, таблицы которой составлялись. Эта группа фактически не была связана с непосредственной вычислительной работой, и получением необходимых формул ее работа заканчивалась. После этого данные, полученные первой группой направляли во вторую группу.

В нее входило девять-десять лиц, достаточно хорошо владевших математикой. Их задача состояла в преобразовании формул, полученных от первой группы, к виду, удобному для работы с числами. Кроме того, вторая группа вычисляла значение функций для аргументов, отстоящих друг от друга на пять или десять интервалов. Подсчитанные ими значения входили в окончательную таблицу в качестве основных. Работа второй группы требовала хороших математических знаний.

После этого формулы передавали третьей, наиболее многочисленной группе, состоящей, примерно, из ста человек. Сотрудники третьей группы получали от второй вместе с формулами и исходные числа. Используя только сложение и вычитание в той последовательности, в которой это было указано в формулах, передаваемых из второй группы, третья группа получала окончательные числовые результаты. Таков был путь расчета таблиц.

Члены второй группы имели возможность проверить расчеты третьей группы, применяя непреобразованные формулы, т. е. не повторяя работы третьей группы.

Следует отметить, что 90% сотрудников третьей группы не знали математики далее двух первых действий арифметики, но ошибались значительно реже, чем те, кто лучше знал математику и больше понимал существо задачи. Вычислители третьей группы не знали общей задачи, да это им и не было нужно. Умея довольно хорошо складывать и вычитать, они работали совершенно механически.

В основном все таблицы были созданы за два года. Простой перечень главных таблиц дает представление о проделанной работе:

1. Таблица синусов через каждую 1/10000 квадранта, рассчитанная с точностью до 25 знаков.

2. Таблица логарифмов синусов через каждую 1/10000 квадранта, т.е. таблица логарифмов всех чисел предыдущей таблицы с точностью до 14 знаков.

3. Таблица логарифмов отношений синусов к их дугам для первых 5000 значений углов из 10000, на которые разбит квадрант. Эта таблица рассчитана до 14 знаков.

4. Таблица логарифмов тангенсов для 10000 углов, на которые разбивается первый квадрант. Таблица аналогична таблице логарифмов синусов и рассчитана с той же степенью точности.

5. Таблица логарифмов отношений тангенсов к их дугам. Таблица аналогична соответствующей таблице логарифмов отношений синусов к их дугам.

6. Таблица логарифмов чисел от 1 до 10000, рассчитанная до 19 знаков.

7. Таблица логарифмов чисел от 10000 до 200000, рассчитанная с точностью до 14 знаков.

Фундаментальная работа, потребовавшая долгого и напряженного труда большого коллектива, — «Кадастр таблиц», как ее назвал Прони, — никогда не была опубликована. Причин было несколько. Одна из них заключалась в том, что деление окружности на 400 частей, а не на 360° имело существенный недостаток, так как 400 имеет меньше делителей чем 360.

Кроме того, с переходом к метрической системе потребовалось бы наряду с перерасчетом громадного числа таблиц (синусов, косинусов и др.) перепечатать тысячи томов математической литературы. В конечном счете дело ограничилось созданием двух экземпляров таблиц, каждый из семнадцати больших рукописных томов. В дальнейшем отдельные таблицы часто использовались в качестве контрольных. Ими пользовался впоследствии и Бэбидж, который для этой цели ездил в Парижскую обсерваторию, где хранились таблицы.

После окончания работ в Париже по составлению таблиц английское правительство обратилось к французскому с предложением напечатать эти таблицы обеими странами с равным распределением затрат. Хотя это предложение и не завершилось изданием таблиц, но в связи с переговорами по этому поводу в Париже была выпущена небольшая брошюра с описанием процесса вычисления таблиц.

После ознакомления с этой брошюрой Бэбидж решил применить метод Прони при создании своей машины. Точнее говоря, машина должна была заменить третью группу вычислителей, на которую в основном падала вся счетная работа.

В основу работы машины Бэбидж решил положить известное свойство многочленов, состоящее в том, что их конечные разности соответствующих порядков (зависящие от степени многочлена) равны нулю. Машину, работающую на этом принципе, он назвал разностной [ 1Впервые идея разностной машины была высказана в 1786 г. немецким военным инженером из Гессена И. Мюллером. Но это было чисто теоретическое предложение, которое никто не пытался осуществить.].

Бэбидж отмечал, что на вопрос о принципе работы машины, он мог бы ответить четырьмя словами: здесь используется метод разностей. При этом он добавлял, что нa этот вопрос можно было бы ответить и шестью знаками: Δ nU x= 0, но такой ответ был бы непонятен спрашивающему, — саркастически замечал он [2 Δ nU x= 0 означает, что для многочлена n—1 степени U x= а + bx + cx 2+ ... + kx n-1n-е разности равны 0.] [85, с. 51].

Для иллюстрации метода разностей приведем следующий простой пример: табулирование функции у=х 3+ х + 1. В таблице 1 наряду со значениями функции у приведены значения конечных разностей: Δ 1(первые разности, или разности первого порядка), Δ 2(вторые разности) и Δ 3(третьи разности). Как видно из таблицы, первые разности получены вычитанием из каждого следующего значения функции ее предшествующего значения. С помощью аналогичной операции над первыми разностями получены вторые разности и т. д. При этом третьи разности данной функции (представляющей собой многочлен третьей степени) имеют одно и то же значение[ 3Если функция представляет собой многочлен степени n, то при табулировании с постоянным шагом n-е разности постоянны.]. Далее, легко заметить, что суммируя по диагонали таблицы 1 конечные разности и соответствующее значение функции можно получить следующее значение данной функции. Например, 6+24+62+131=223. Именно это обстоятельство (возможность получения новых значений функции путем суммирования вычисленных ранее данных) Бэбидж решил использовать для механизации процессов составления таблиц с помощью специального устройства (разностной машины).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Игорь Апокин читать все книги автора по порядку

Игорь Апокин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Чарльз Бэбидж 1791—1871 отзывы


Отзывы читателей о книге Чарльз Бэбидж 1791—1871, автор: Игорь Апокин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x