Эндрю Ходжес - Игра в имитацию

Тут можно читать онлайн Эндрю Ходжес - Игра в имитацию - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство АСТ, год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Эндрю Ходжес - Игра в имитацию краткое содержание

Игра в имитацию - описание и краткое содержание, автор Эндрю Ходжес, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
О загадочной, «зашифрованной» судьбе великого криптографа снят фильм «Игра в имитацию», который получил главную награду Кинофестиваля в Торонто в 2014 году. В роли Тьюринга — Бенедикт Камбербэтч, прославившийся своей ролью в телесериале «Шерлок». А его несостоявшуюся невесту Джоан Кларк сыграла Кира Найтли.
Национальный совет кинокритиков США и Американский институт киноискусства включили «Игру в имитацию» в топ 10 фильмов 2014 года. Также фильм получил пять номинаций на премию «Золотой глобус».
Настало время миру узнать о Тьюринге.

Игра в имитацию - читать онлайн бесплатно полную версию (весь текст целиком)

Игра в имитацию - читать книгу онлайн бесплатно, автор Эндрю Ходжес
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Сторонникам принципа прикладной математики эта работа могла показаться «достаточно серьёзным исследованием в области квантовой механики», поскольку для ее понимания требовалось знание последних открытий в области чистой математики. В некотором роде работа представляла собой слияние двух на первый взгляд абсолютно разных теорий Шрёдингера и Гейзенберга: выразив основные идеи двух теорий в абстрактной математической форме фон Нейман доказал их эквивалентность. В своем исследовании ученый руководствовался именно логикой, а не результатами проведенных экспериментов. Такой прекрасный пример того, как исследование в области чистой математики принесло неожиданные результаты в физике, несомненно стало источником вдохновения для Алана.

Еще до начала войны Гильберт представил научному миру работу, обобщающую всю евклидову геометрию, которая рассматривала пространство с бесконечным множеством измерений. Такое «пространство» не имело ничего общего с пространством в привычном представлении. Его можно сравнить с воображаемым графом, на котором можно отметить любые звуки, учитывая, что звуки флейты, скрипки или фортепиано включают в себя основной тон, первую гармонику, вторую гармонику и так далее, — то есть каждый звук представляет собой особый набор бесконечно малых его составляющих. В приведенной аналогии точка в подобном «гильбертовом пространстве» соответствует звуку, к ней добавляются еще две точки (как при добавлении звуков), при этом точка может увеличиться в несколько раз (как при усилении звука).

Фон Нейман заметил, что именно «гильбертово пространство» как ничто другое подходило для более точного описания «состояния» системы в квантовой механике, например, электрона в атоме водорода. Одной из характерных особенностей таких «состояний» представлялась возможность их добавления, как в примере со звуками, другая особенность заключалась в бесконечном множестве возможных «состояний», как в случае с бесконечным множеством гармонических рядов. Таким образом, понятие гильбертова пространства было использовано для определения строгой теории квантовой механики.

Такое неожиданное применение «гильбертова пространства» только подтвердили взгляды Алана на принципы чистой математики. Следующее подтверждение он обнаружил в 1933 году, когда был открыт позитрон. Ранее Дирак предсказывал это открытие, основываясь на теории абстрактной математики, для которой было необходимо объединение аксиом квантовой механики с аксиомами теории специальной относительности. Так, в спорах об отношениях математики и науки Алан Тьюринг обнаружил потребность решить один трудный и важный для него вопрос.

Как отдельная научная дисциплина математика была признана лишь в конце девятнадцатого века. До тех пор математика представляла область отношений между числами и количеством веществ, представленных в материальном мире, хотя ошибочность такого суждения стало известно с появлением такого понятия как «отрицательные числа». Однако в девятнадцатом веке во многих отраслях науки начали появляться тенденции по применению абстрактного подхода, и математические символы постепенно стали терять непосредственную связь с физическими объектами.

В школьной алгебре — в сущности, алгебре восемнадцатого века — буквы обычно использовались для обозначения численных величин. Правила сложения и умножения применялись с тем допущением, что они действительно несли в себе числовое значение, но на самом деле оно было необязательным, а порой и неуместным.

Суть такого абстрактного подхода заключалась в освобождении алгебры, а значит, и всей математики, из общепринятой сферы вычислений и систем мер. В современной математике символы могут использоваться применительно к любым правилам, а их значение, если оно задано, может выходить за рамки численных величин. Квантовая механика послужила прекрасным примером того, как освобождение от условностей и развитие такой научной дисциплины, как математика в работе, представляющей собственный интерес, может принести значительные результаты в физике. Этот пример также указал на необходимость создать теорию не чисел и величин, а «состояний», как в случае с понятием «гильбертова пространства». По той же причине квантовые физики принялись разрабатывать новую теорию в области чистой математики, а именно абстрактную теорию групп. Сама идея создания абстрактной теории групп возникла при попытке математиков записать «операции» в символьном виде, рассматривая полученный результат, как чистую абстракцию. В результате такого абстрактного подхода ученым удалось свести алгебраические операции к общим законам, объединить их и провести новые аналогии. Такой шаг в науке можно было расценивать, как конструктивный и созидательный, поскольку, изменив правила таких абстрактных систем, наука открыла для себя новые разделы алгебры с непредвиденными областями применения.

С другой стороны, тенденция к применению абстрактного метода создала что-то вроде кризиса в области чистой математики. Если она теперь представлялась лишь игрой в символы, в которой игроки следуют произвольным правилам, что же стало с чувством абсолютной истины? В марте 1933 года Алан приобрел «Введение в математическую философию» Бертрана Рассела, в которой ученый попытался ответить на главный вопрос.

Сначала кризис возник в исследованиях в области геометрии. В восемнадцатом веке могло казаться, что геометрия — область науки, представляющая собой свод истин об устройстве мира, и аксиомы Евклида выразили их самую суть. Но уже в девятнадцатом веке появились исследования геометрических систем, которые не вписывались в геометрию Евклида. Также сомнению подверглось убеждение, что геометрия Вселенной является евклидовой. И в рамках отделения математики от естественных наук появилась необходимость задать вопрос, представляет ли евклидова геометрия в абстрактном представлении полное и законченное целое.

Оставалось неясным, действительно ли евклидовы аксиомы описывали полную теорию геометрии. Могло ли случиться так, что некоторые дополнительные предположения были хитрым образом представлены в виде доказательств из-за интуитивных и не выраженных явно идей о точках и прямых. С точки зрения современной науки, появилась необходимость абстрагировать логические связи между точками и прямыми, чтобы выразить их в рамках чисто символических правил, забыть об их «значении» с точки зрения физического пространства и тем самым показать, что в результате эта игра абстракциями была целесообразна сама по себе. Как однажды находясь под влиянием абстрактной точки зрения Виннера на геометрические объекты, Гильберт глубокомысленно заметил своим спутникам: «Следует добиться того, чтобы с равным успехом можно было говорить вместо точек, прямых и плоскостей о столах, стульях и пивных кружках».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эндрю Ходжес читать все книги автора по порядку

Эндрю Ходжес - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Игра в имитацию отзывы


Отзывы читателей о книге Игра в имитацию, автор: Эндрю Ходжес. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x