Эндрю Ходжес - Игра в имитацию
- Название:Игра в имитацию
- Автор:
- Жанр:
- Издательство:АСТ
- Год:2015
- Город:Москва
- ISBN:978-5-17-089741-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эндрю Ходжес - Игра в имитацию краткое содержание
Национальный совет кинокритиков США и Американский институт киноискусства включили «Игру в имитацию» в топ 10 фильмов 2014 года. Также фильм получил пять номинаций на премию «Золотой глобус».
Настало время миру узнать о Тьюринге.
Игра в имитацию - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В случае основного читателя журнала Лондонского математического общества Proceedings существовало сразу несколько причин, почему работа Алана не могла заинтересовать его в полной мере. Математическая логика оставалась отчасти периферийной темой для исследований, в которой сами математики обычно видели или попытку доработать то, что и так всем известно, или попытку создать новые проблемы на пустом месте. Начало работы казалось увлекательным, но после (типичным для Тьюринга образом) текст заводил читателя в непролазные дебри рядов непонятных готических символов, объясняющих устройство таблиц его универсальной машины. И в последнюю очередь этим могли заинтересоваться специалисты прикладной математики, которые обычно прибегают к практическому вычислению в таких областях, как астрофизика и гидроаэромеханика, где уравнения не приводят к решениям в явном виде. Также статья «О вычислимых числах» не шла на уступку в отношении конструирования, даже для ограниченного ряда логических задач, которые указывались в работе как область применения машин. К примеру, в работе Алан принял за условие, что машины должны печатать «вычислимые числа» на дополнительных ячейках ленты, а также использовать промежуточные ячейки в качестве рабочего поля. Но работа устройства значительно могла быть упрощена, если бы он допускал увеличение рабочего пространства на ленте. Таким образом, его работа не представляла особого интереса для ученых, не входящих в узкий круг специалистов в области математической логики, за возможным исключением в отношении специалистов в области чистой математики, которых могло заинтересовать проводимо в статье различие между вычислимыми числами и действительными числами.
И все же был один человек, один из тех немногих, чей профессиональный интерес лежит в области математической логики, который прочитал статью с значительным личным интересом к представленной в ней теме исследования.
Это был Эмиль Пост, американский математик с польскими корнями, занимающий преподавательскую должность в Городском колледже Нью-Йорка. Еще с начала 1920-х годов он предвосхитил некоторые из идей Гёделя и Тьюринга в своих неопубликованных работах. В октябре 1936 года он представил на рассмотрение в находившийся в то время под редакцией Чёрча «Журнал символьной логики» свою статью, в которой предложил свой способ уточнить то, что имелось в виду под словами «решение общей проблемы». В работе автор ссылался на статью Чёрча, которая расправилась с проблемой Гильберта о разрешимости, но вместе с тем ставила условие, что любой определенный метод может быть выражен в виде формулы в рамках его лямбда-исчисления. Пост в свою очередь предложил, что определенным методом может стать тот, который может быть записан в виде таблицы инструкций для не обладающего разумом «оператора», работающего на бесконечном полотне «коробок», при этом его возможности должны заключаться лишь в умении считывать указанные инструкции, а также
(a) Отмечать коробку, в которой он находится (предположительно пустую),
(b) Стирать отметку с коробки, в которой он находится (предположительно уже отмеченную),
(c) Передвигаться к следующей коробке справа,
(d) Передвигаться к следующей коробке слева,
(e) Определять отмечена ли коробка, в которой он находится, или же нет.
Поразительным казалось то, что «оператор» Поста должен был выполнять тот же набор действий, что и машины Тьюринга. Некоторое соответствие также просматривалось в плане приведенных в работах терминов. Образность устройства Поста, пожалуй, более очевидно базировалась на устройстве сборочного конвейера. В целом, статья Поста представлялась менее амбициозной, чем работа «О вычислимых числах», поскольку он так и не пришел к идее «универсального оператора» и не рассматривал самостоятельно проблему разрешимости Гильберта. Также его работа была лишена рассуждений о природе конфигураций такой машины. Вместе с тем, ему достаточно точно удалось предположить, что изложенная им формулировка поможет устранить оставленную Черчем брешь в теории. Таким образом, уже его работу на несколько месяцев опередила машина Тьюринга, и Чёрчу пришлось подтверждать, что его работа носила независимый характер. И даже если бы Алана Тьюринга никогда и не было, его идея была обречена появиться на свет в той или иной форме, поскольку она служила тем необходимым мостиком, установившим связь между миром логических идей и миром практических применений.
С другой стороны, эта идея связала мир логических идей с миром деятельности человека, что сам Тьюринг оценивал как задачу наиболее трудно решаемую. Одно дело — прийти к идее, и совсем другое суметь произвести с их помощью впечатление на весь мир. В каждом случае требовались абсолютно разные способы решения. Хотел ли Алан того или нет, но его умственная активность была заключена в рамки академической системы, которая как и любая другая организация предоставляла больше возможностей тем, кто умел пускать в ход свои связи и завязывать нужные знакомства. Но как отмечали его современники, в этом отношении он оставался всегда в стороне. Он предполагал, что истина каким-то магическим способом в конце концов восторжествует, и поэтому считал продвижение своего имени слишком низменным и обыденным занятием, чтобы даже беспокоиться об этом. Одним из его излюбленных словечек было «фальшивка», которое он употреблял по отношению к любому, кто добился некоторого положения или должности за счет того, что сам Алан считал необоснованным научным авторитетом. Это же слово он однажды употребил в адрес рецензента одной из его представленных на рассмотрение весной того же года работ по теории групп, который пришел к ошибочному пониманию его исследования.
Постепенно он стал осознавать необходимость направить большие усилия на самореализацию, к тому же он не мог не заметить, что его друг Морис Прайс как раз представлял собой прекрасный пример того, как в одном человеке интеллектуальные способности могут уживаться со способностью представлять результаты своих исследований в самом выгодном для него свете.
К тому времени они оба прошли долгий путь с той недели, которую провели вместе в Тринити-Колледже в далеком декабре 1929 года. Алану удалось стать первым студентом, избранным в члены совета (благодаря благосклонности Кингз-Колледжа при рассмотрении темы его диссертационной работы). Но Морис не отставал и был избран в члены совета Тринити-Колледжа, что казалось немного более впечатляющим достижением. К тому же именно в нем все видели восходящую звезду в области математических наук. Их интересы развивались, дополняя друг друга: Морис занялся квантовой электродинамикой, при этом поддерживая свой интерес к чистой математике. Но общим интересом для них оставались фундаментальные проблемы. Довольно часто они пересекались на лекциях в Кембриджском университете и порой обменивались записями за чаем, и вскоре выяснилось, что семья Прайсов также обосновалась в Гилфорде. Однажды Морис был приглашен в дом 8 на Эннисмор-Авеню, где во время знакомства миссис Тьюринг приняла его за школьника из малоимущей семьи. Алан в свою очередь был приглашен в лабораторию Мориса, самостоятельно оборудованную им в гараже Прайсов, и остался под большим впечатлением от увиденного.
Читать дальшеИнтервал:
Закладка: