Д. Самин - 100 великих учёных

Тут можно читать онлайн Д. Самин - 100 великих учёных - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство Вече, год 2004. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Д. Самин - 100 великих учёных краткое содержание

100 великих учёных - описание и краткое содержание, автор Д. Самин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Пифагор, Гиппократ, Архимед, Кеплер, Декарт, Ньютон, Ломоносов, Лобачевский, Менделеев… у каждого из них своя судьба, свой путь в науку, но всех их объединяет страстное желание познать истину, прикоснуться к загадке бытия. В книге собраны биографии ста великих учёных, открытия которых произвели революцию в мировой науке, далеко раздвинули границы непознанного, наметили новые пути для исследователей.

100 великих учёных - читать онлайн бесплатно полную версию (весь текст целиком)

100 великих учёных - читать книгу онлайн бесплатно, автор Д. Самин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вернер Карл Гейзенберг родился 5 декабря 1901 года в немецком городе Вюрцбурге. Отец Вернера, Август, благодаря успешной научной деятельности сумел подняться до уровня представителей высшего класса немецкой буржуазии. В 1910 году он стал профессором византийской филологии Мюнхенского университета. Матерью мальчика была урождённая Анна Веклейн.

С самого рождения Вернера его семья твёрдо решила, что он тоже должен достичь высокого социального положения благодаря образованию. Полагая, что соперничество должно благоприятствовать достижению успеха в науке, отец провоцировал Вернера и его старшего брата Эрвина к постоянной конкуренции. В течение многих лет мальчики часто дрались, и однажды соперничество довело их до такой драки, что они били друг друга деревянными стульями. Повзрослев, каждый из них пошёл собственным путём: Эрвин уехал в Берлин и стал химиком, они почти не общались, не считая редких встреч в кругу семьи.

В сентябре 1911 года Вернера отдали в престижную гимназию. В 1920 году Гейзенберг поступил в Мюнхенский университет. Окончив его, Вернер был назначен ассистентом профессора Макса Борна в Гёттингенском университете. Борн был уверен, что атомный микромир настолько отличается от макромира, описанного классической физикой, что учёным нечего и думать пользоваться при изучении строения атома привычными понятиями о движении и времени, скорости, пространстве и определённом положении частиц. Основа микромира — кванты, которые не следовало пытаться понять или объяснить с наглядных позиций устаревшей классики. Эта радикальная философия нашла горячий отклик в душе его нового ассистента.

Действительно, состояние атомной физики напоминало в это время какое-то нагромождение гипотез. Вот если бы кому-нибудь удалось на опыте доказать, что электрон действительно волна, вернее, и частица и волна… Но таких опытов пока не было. А раз так, то и исходить из одних только предположений, что представляет собой электрон, по мнению педантичного Гейзенберга, было некорректно. А нельзя ли создать теорию, в которой будут только известные экспериментальные данные об атоме, полученные при изучении излучаемого им света? Что можно сказать об этом свете наверняка? Что он имеет такую-то частоту и такую-то интенсивность, не больше…

По теории квантов атом испускает свет, переходя из одного энергетического состояния в другое. А по теории Эйнштейна интенсивность света определённой частоты зависит от количества фотонов. Значит, можно было попытаться связать интенсивность излучения с вероятностью атомных переходов. Квантовые колебания электронов, уверял Гейзенберг, нужно представлять только с помощью чисто математических соотношений. Надо лишь подобрать для этого подходящий математический аппарат. Молодой учёный выбрал матрицы. Выбор оказался удачным, и скоро его теория была готова. Работа Гейзенберга заложила основы науки о движении микроскопических частиц — квантовой механики.

В ней вообще не говорится ни о каком движении электрона. Движения в прежнем смысле этого слова не существует. Матрицы описывают просто изменения состояния системы. Потому спорные вопросы об устойчивости атома, о вращении электронов вокруг ядра, о его излучении отпадают сами собой. Вместо орбиты в механике Гейзенберга электрон характеризуется набором или таблицей отдельных чисел вроде координат на географической карте.

Надо сказать, что матричная механика появилась весьма кстати. Идеи Гейзенберга подхватили другие физики, и скоро, по выражению Бора, она приобрела «вид, который по своей логической завершённости и общности мог конкурировать с классической механикой».

Впрочем, было в работе Гейзенберга и одно удручающее обстоятельство. По его словам, ему никак не удавалось вывести из новой теории простой спектр водорода. И каково было его удивление, когда некоторое время спустя после опубликования его работы… «Паули преподнёс мне сюрприз: законченную квантовую механику атома водорода. Мой ответ от 3 ноября начинался словами: „Едва ли нужно писать, как сильно я радуюсь новой теории атома водорода и насколько велико моё удивление, что Вы так быстро смогли её разработать“».

Почти в то же самое время теорией атома с помощью новой механики занимался и английский физик Дирак. И у Гейзенберга, и у Дирака вычисления носили крайне абстрактный характер. Никто из них не уточнял сущность употребляемых символов. И лишь в конце вычислений вся их математическая схема давала правильный результат.

Математические аппараты, которыми пользовались Гейзенберг и Дирак при разработке теорий атома в новой механике, были для большинства физиков и непривычны, и сложны. Не говоря уже о том, что никто из них, несмотря на все ухищрения, не мог свыкнуться с мыслью, что волна — это частица, а частица — волна. Как представить себе такого оборотня?

Работавший в то время в Цюрихе Эрвин Шрёдингер подошёл к проблемам атомной физики совершенно с другой стороны и с другими целями. Его идея состояла в том, что любую движущуюся материю можно рассматривать в виде волн. Если это верно, то Шрёдингер превращал основы матричной механики Гейзенберга в нечто совершенно неприемлемое.

В мае 1926 года Шрёдингер опубликовал доказательство того, что эти два конкурирующих подхода по существу математически эквивалентны. Гейзенберг и другие приверженцы матричной механики сразу же начали борьбу в защиту своей концепции, причём с обеих сторон она принимала всё более эмоциональную окраску. В защиту этого подхода они поставили на карту своё будущее. Шрёдингер же рисковал своей репутацией, отказываясь от признания кажущихся иррациональными понятий дискретности и квантовых скачков и возвращаясь к физическим закономерностям непрерывного, причинно обусловленного и рационального волнового движения. Ни одна из сторон не желала пойти на уступки, что означало бы признание профессионального превосходства противников. Сама суть и будущее направление развития квантовой механики внезапно стали предметом спора в научном мире.

Этот раздор в дальнейшем усилился в связи с появлением карьерных амбиций со стороны Гейзенберга. Всего за несколько недель до того, как Шрёдингер опубликовал доказательство эквивалентности обоих подходов, Гейзенберг отказался от должности профессора в Лейпцигском университете, отдав предпочтение сотрудничеству с Бором в Копенгагене. Скептически настроенный Веклейн, дед Вернера, поспешил в Копенгаген, чтобы попытаться отговорить внука от принятого им решения; именно в этот момент появилась работа Шрёдингера об эквивалентности обоих подходов. Возобновившееся давление Веклейна и брошенный Шрёдингером вызов фундаментальным основам матричной физики заставили Гейзенберга удвоить усилия и попытаться сделать работу на таком высоком уровне, чтобы она получила широкое признание у специалистов, и в конечном итоге обеспечила бы получение места на какой-либо другой кафедре.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Д. Самин читать все книги автора по порядку

Д. Самин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




100 великих учёных отзывы


Отзывы читателей о книге 100 великих учёных, автор: Д. Самин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x