Василий Борисов - Владимир Козьмич Зворыкин
- Название:Владимир Козьмич Зворыкин
- Автор:
- Жанр:
- Издательство:Наука
- Год:2004
- Город:Москва
- ISBN:5-02-032954-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Василий Борисов - Владимир Козьмич Зворыкин краткое содержание
Книга посвящена жизни и деятельности всемирно известного ученого, основоположника современного телевидения B.K. Зворыкина. Сын муромского купца, окончивший Петербургский технологический институт, после революции и гражданской войны вынужден был эмигрировать в США, где более полувека проработал в крупнейших исследовательских лабораториях. Зворыкин - не только автор фундаментальных изобретений, сделавших возможным рождение "чуда XX века" - электронного телевидения, ему принадлежат пионерские разработки в области фотоэлектронных умножителей и электронно- оптических преобразователей, электронной микроскопии, применения электроники в биологии и медицине.
Для читателей, интересующихся развитием мировой науки и техники, а также историей русского зарубежья.
Владимир Козьмич Зворыкин (1889-1982) - выдающийся ученый и изобретатель, автор работ, ставших основой для развития современного телевидения. В книге описана жизнь и деятельность ученого, родившегося в городе Муроме, получившего образование в Санкт-Петербурге и более полувека работавшего в исследовательских лабораториях США. Увлекшись идеей электронного телевидения в годы учебы в Петербургском технологическом институте, В. К. Зворыкин проявил в дальнейшем удивительную настойчивость в реализации своих идей. Зворыкину принадлежат также пионерские работы в области электронных микроскопов, фотоэлектронных умножителей, электронно-оптических преобразователей, приборов медицинской электроники. Прожив шестьдесят лет в эмиграции, Зворыкин старался никогда не терять связи с Россией.
Владимир Козьмич Зворыкин - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
1947 - назначен на должность вице-президента RCA;
1948 - награжден Почетным Дипломом президента США, орденом Почетного легиона Франции;
1949 - выходит книга В.К. Зворыкина и Э. Рэмберга "Фотоэлектричество и его применение";
1951 - награжден медалью Доблести Институтом радиоинженеров; вступает в брак с Е.А. Полевицкой;
1952 - награжден медалью им. Эдисона Американского института инженеров-электриков;
1954 - уходит в отставку с поста вице-президента RCA; избран почетным вице-президентом Американской радиокорпорации;
1954 - начинает работу директором Центра медицинской электроники Института Рокфеллера в Нью-Йорке;
1957 - разрабатывает телевизионный микроскоп УФ-диапазона;
1965 - награжден медалью им. Фарадея Британского Института инженеров-электриков;
1966 - награжден президентом США Национальной медалью науки;
1967 - награжден Золотой Пластиной Американской академии достижений;
1968- награжден медалью Первооткрывателей Американской инженерной академии;
1977 - избран в Национальную Галерею Славы США;
1978 - избран в Русско-Американскую Галерею Славы;
1982 - скончался 29 июля, похоронен в США в г. Принстоне.
Приложение В.К. Зворыкин Иконоскоп - современный вариант электрического глаза [16] Доклад на VIII годичном собрании Американского института радиоинженеров в Чикаго, шт. Иллинойс, 26 июня 1933 г. Опубл.: Proceedings of the IRE. 1934. Vol. 22. January. P. 16-32.
В статье в общих чертах рассматривается работа по созданию прибора, который фактически представляет собой электронный глаз - иконоскоп, обеспечивающий видение той или иной сцены для ее телевизионной передачи и других подобных применений. Доведение первоначальной идеи до нынешней стадии завершенности потребовало десятилетнего труда.
Иконоскоп - это вакуумный прибор с фоточувствительной поверхностью особого типа. Фоточувствительная поверхность сканируется электронным лучом, который служит безынерционным коммутатором. Новый принцип действия позволяет получить весьма высокий уровень сигнала на выходе такого прибора.
В настоящее время чувствительность иконоскопа приблизительно равна чувствительности фотографической пленки при выдержке, соответствующей съемке кинокамерой. Большая разрешающая способность иконоскопа полностью отвечает требованиям телевидения.
В статье описываются принцип действия, характеристики и режим работы прибора.
В применении к телевидению иконоскоп заменяет механическое развертывающее устройство и несколько каскадов усиления. Система в целом является полностью электрической и не содержит ни одной движущейся механической части.
Прием изображения, осуществляется с помощью кинескопа - приемной электронно-лучевой трубки, описанной в одной из предыдущих статей.
Описываемая трубка открывает широкие возможности для ее применения во многих областях в качестве электрического глаза, чувствительного не только в видимом спектре, но и в инфракрасном и ультрафиолетовом диапазонах.
Идея наблюдения событий, происходящих на большом удалении, весьма заманчива. Создание прибора, предоставляющего человеку такую возможность, веками было мечтой изобретателей и в течение нескольких десятилетий являлось целью серьезных исследований.
Сделать эту мечту реальностью и входит в задачу телевидения. Однако такая задача очень сложна и для своего решения требует множества составных элементов, большинство из которых до последних лет не было даже известно.
Смысл вйдения на большом расстоянии можно интерпретировать как мгновенную передачу изображения на данное расстояние. Но для этого необходимы исключительно быстродействующие, безынерционные средства связи. Открытие электричества и развитие электросвязи заложили основу для будущей реализации телевидения.
Первым шагом, который обеспечил возможность преобразования изображения в электрический сигнал, явилось открытие в мае 1873 г. фотопроводимости селена. Дальнейшему продвижению вперед способствовало открытие фотоэлектрического эффекта, сделанное Герцем пятнадцатью годами позже. Последующие годы ознаменовались быстрым развитием данного направления благодаря исследованиям эффекта фотопроводимости, проведенным Гальвак- сом, Элстером, Гейтелем и другими.
О том, с каким энтузиазмом воспользовались экспериментаторы этими новыми достижениями, свидетельствует тот факт, что первое решение проблемы телевидения с помощью селенового элемента было предложено Кэри в 1875 г., т.е. спустя лишь два года после открытия свойств селена. Кэри предложил имитировать человеческий глаз мозаикой, составленной из большого числа миниатюрных селеновых элементов. Следующая попытка сконструировать подобную мозаику с небольшим числом элементов была сделана Айртоном и Перри в 1877 г. Позднее, в 1906 г., Риньо и Фурнье применили мозаику такого типа для передачи простых образов и букв. Их передатчик представлял собой "шахматную доску" из 64 селеновых элементов, каждый из которых соединялся двумя проводами с соответствующим затвором на аналогичной "шахматной доске" приемника. Изображение проецировалось на селеновые элементы, создавая в них электрические токи, которые в свою очередь управляли затворами. Задняя подсветка системы затворов позволяла воспроизводить изображение.
Идея разбиения изображения на небольшие элементы, преобразования яркости каждого из них в электрический ток и передачи этих токов по отдельным проводам сама по себе хороша, но делает систему технически сложной. Чтобы передать высококачественное изображение таким способом, потребовалось бы огромное количество пар проводов, что, разумеется, непрактично. Для упрощения этой задачи Нипков в 1884 г. предложил передавать не все элементы изображения одновременно, а точку за точкой, сканируя изображение с помощью диска. Таким образом, появлялась возможность передачи изображения по одному проводу или по одному каналу связи, что существенно упрощало задачу.
Однако введение одного лишь сканирующего диска еще не решало всей задачи, поскольку не хватало ряда других важных элементов. Почти 40 лет спустя, разработка усилительных электронных ламп для целей радиосвязи и газоразрядных ламп создала предпосылки для реализации телевидения, и рядом изобретателей была продемонстрирована передача телевизионных изображений по радио.
В последующие несколько лет развитие этого направления техники продвигалось быстрыми темпами и, несмотря на трудности, возникавшие в процессе разработок, были получены впечатляющие результаты. Практически все работы проводились с применением механических методов развертки на основе дисков Нипкова, многогранных зеркал, зеркальных винтов и т.п. Такие методы отличались сложностью чисто механического характера, связанной с конструированием прецизионных сканирующих устройств, увеличением числа элементов изображения и особенно с получением достаточной освещенности. Последнее ограничение буквально воздвигло каменную стену, которая не позволяла увеличить разрешение передаваемых изображений и тем самым добиться требуемого качества, что практически исключало всякую надежду на передачу внестудийных сцен, т.е. на достижение истинной цели телевидения.
Читать дальшеИнтервал:
Закладка: