Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим
- Название:Жизнеописание Л. С. Понтрягина, математика, составленное им самим
- Автор:
- Жанр:
- Издательство:Прима
- Год:1998
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим краткое содержание
С именем Понтрягина связана целая эпоха в развитии математики. Труды Л. С. Понтрягина оказали определяющее влияние на развитие топологии и топологической алгебры. Он заложил основы и доказал основные теоремы в оптимальном управлении и теории дифференциальных игр. Его идеи во многом предопределили развитие математики в XX веке.
Текст публикуемого ниже «Жизнеописания...» был написан, по воспоминанию вдовы Льва Семёновича — Александры Игнатьевны Понтрягиной, после тяжёлой болезни, зимой 1982–83 года, и подготовлен к изданию по рукописи, предоставленной вдовой.
Книга насквозь лична и субъективна, но в ней хорошо отражена эпоха развития науки в Советском Союзе, в частности — развитие математики. Она поражает своей правдивостью и открытостью. В этом, может быть, и есть её историческая и воспитательная ценность.
Жизнеописание Л. С. Понтрягина, математика, составленное им самим - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Стремление к большей общности, свойственное новым программам, и повсеместное употребление «множества» как научного термина выражается, например, в том, что геометрическая фигура определяется как «множество точек». А так как в теории множеств два множества могут быть равными, лишь полностью совпадая, то слово «равенство» уже не применимо к двум различным треугольникам. Это слово заменяется другим, не свойственным русскому языку, термином «конгруэнтность». Этот термин не употребляется в практике. Никакой строитель не будет говорить о двух «конгруэнтных балках» (или закройщик из ателье о «конгруэнтных кусках ткани»), а будет говорить о равных, или одинаковых балках (кусках ткани).
Выше мы привели неудобоваримое определение вектора. Очень характерный пример того, как относительно простое, интуитивно ясное понятие преподносится педагогически абсурдным способом. А получилось оно у авторов таким ввиду того, что прежнее определение не укладывается в теоретико-множественную концепцию. Ведь вектор не есть «множество». И равенство векторов не есть теоретико-множественное равенство. Потому в современном школьном курсе геометрии вектор и предстал как «параллельный сдвиг пространства», а сложение двух векторов — как «последовательное применение двух параллельных сдвигов». Определения эти не только чрезвычайно сложны — они совершенно не соответствуют общепринятому аппарату физики, механики, всех технических наук.
Так же обстоит дело и с определением функции. Вместо того, чтобы сказать, что функция есть величина «игрек», числовое значение которой можно найти, зная числовое значение независимой переменной «икс», — что в общем виде записывается: y = f ( x ), — и дать ряд примеров её при помощи формул, функцию определяют, по существу, как отображение одного множества на другое. Делается это, однако, в школьных учебниках куда сложнее: сперва вводится понятие отношения между элементами двух различных множеств, а потом говорится, что при выполнении некоторых условий, наложенных на это отношение, последнее является функцией.
Новые учебники переполнены такого рода громоздкими, сложными, а главное, ненужными определениями. Математическое понятие уравнения стремятся свести к грамматическому понятию предложения. На бедные детские головы обрушивается понятие уравнения как «предложения с переменной» ( Ю. Н. Макарычев , Н. Г. Миндюк , К. С. Муравин . Алгебра. Учебник для 6-го класса средней школы. М., «Просвещение», 1977, с. 12). Наткнувшись на него, я никак не мог понять, что же это значит. Примеры уже даются в учебнике для четвёртого класса. Так, приводится «предложение»: «Река x впадает в Каспийское море». Далее разъясняют, что если вместо x подставить «Волга», то мы получим правильное утверждение, и, следовательно, «Волга» есть решение этого уравнения. Если же вместо x подставить «Днепр», то получится неверное утверждение, и потому «Днепр» не является решением этого уравнения (см. Н. Я. Виленкин , К. И. Нешков , С. И. Шварцбурд , А. С. Чесноков , А. Д. Семушин . Математика. Учебник для 4-го класса средней школы. М., «Просвещение», 1979, с. 39).
Какое это имеет отношение к математике? У неё своя специфика, и нет надобности сводить её к грамматическим понятиям. Однако этот факт в высшей степени симптоматичен, если вернуться к тому, что говорилось выше о «философии математики», готовой свести предмет математической теории к манипулированию её «языком» — к «лингвистике».
Чрезмерно абстрактный характер придан преподаванию математики уже в первых классах и уже там мешает освоению её основного предмета — арифметики. Внедрение нарочито усложнённой программы, вредной по своей сути, осуществляется к тому же с помощью недоброкачественных, в ряде случаев просто безграмотно выполненных учебников. Но главный порок, конечно же, в самом ложном принципе — от более совершенного его исполнения школа не выиграет.
А ведь, признаться, неплохим, в общем, был предшествующий опыт школьного обучения, неплохими были и учебники, — не случайно именно к ним обращаются репетиторы, подготавливая сегодня абитуриентов в вузы. Кстати говоря, не отказ ли от того положительного, что было раньше в школьном преподавании, способствовал развитию «чёрного рынка» репетиторства с его спекулятивными ценами — явления возмутительного, несовместимого с нравственными принципами нашего общества.
Такого рода «стихийные бедствия» совершенно не согласуются и с принципами социального управления, которым неукоснительно должна следовать и наша школьная система.
Что же касается более благополучных вариантов учебников, то есть такие — например, по геометрии, написанный академиком А. В. Погореловым ( А. В. Погорелов . Геометрия. Пособие для учителей. М., «Просвещение», 1979). Однако создаётся впечатление, что Министерство просвещения СССР не спешит умножить число подобных примеров.
Иногда официальные лица министерства, защищая теоретико-множественный подход как «современный» в школьной педагогике, ссылаются на пример западноевропейских стран: мол, там этот подход вошёл в жизнь, а мы-де отстаём от передового опыта. А между тем Парижская Академия наук, например, ещё в 1972 году обнаружила, что подобная модернизация преподавания математики приводит к появлению неудовлетворительных и ошибочных учебников и методов преподавания, что обучение математике во французских школах не приносит общему образованию той пользы, которой от него следовало бы ожидать.
Четыре года назад крупнейший французский математик Жан Лере, выступая в Рабате на первом панафриканском Математическом конгрессе, критически оценил постановку школьного дела в развитых капиталистических странах, отметив, что преподаватели и учебники там всё с большим трудом передают детям те знания, которые им необходимы для жизни. Вот что сказал он о математике, преподаваемой в школах Франции: «Развитие понятия множества в последнее время значительно расширило область применения и силу математических методов, но значит ли это, что преподавание математики юношам и девушкам должно быть основано на этом понятии, то есть проходить по схеме, принятой в прекрасном трактате Н. Бурбаки? Ответ может быть только отрицательным... Можно ли строить курс математики для юношества логически на теории множеств, то есть выразить сущность этой теории на простом и доступном языке? Во Франции это пытались сделать с самонадеянностью, основанной на непонимании, что не могло не привести к катастрофе... Торжество методики, основанной на повторении многословных определений, имеет самые серьёзные социальные последствия. С одной стороны, это отваживает от научного образования способных юношей, которые лишены привилегии иметь взрослого руководителя, способного объяснить им, что они правы, не понимая того, что им преподают, с другой стороны, это привлекает к занятиям как раз наименее способных и думающих учеников, которые учат наизусть и повторяют, не понимая смысла... Извращённая ситуация, в которой оказалось преподавание математических дисциплин во Франции, в большей степени, чем в англо-саксонских странах, возникла из вполне законного стремления к прогрессу. Наши самые искренние и цельные реформаторы не сумели отстранить от этого дела шарлатанов, которые использовали их инициативу, например, тех, кто с лёгкостью написал толстые учебники, полные ошибок, и получил преимущественное право на их переиздание, то есть воспроизведение ошибок. Сами учителя были подготовлены интенсивной пропагандой... Методисты боятся потерять авторитет, если исправят допущенные ошибки. Я прочёл двум, сменившим один другого, министрам национального образования Франции основное содержание министерских инструкций, имеющих целью ошеломить наших детей научными определениями прямой... Они признали, что не понимают сами того, что предлагают в качестве обязательных инструкций, однако инструкций не отменили».
Читать дальшеИнтервал:
Закладка: