Маша Гессен - Совершенная строгость. Григорий Перельман: гений и задача тысячелетия

Тут можно читать онлайн Маша Гессен - Совершенная строгость. Григорий Перельман: гений и задача тысячелетия - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство Астрель, Corpus, год 2011. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Совершенная строгость. Григорий Перельман: гений и задача тысячелетия
  • Автор:
  • Жанр:
  • Издательство:
    Астрель, Corpus
  • Год:
    2011
  • ISBN:
    978-5-271-33232-6
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Маша Гессен - Совершенная строгость. Григорий Перельман: гений и задача тысячелетия краткое содержание

Совершенная строгость. Григорий Перельман: гений и задача тысячелетия - описание и краткое содержание, автор Маша Гессен, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В 2002—2003 годах российский математик Григорий Перельман опубликовал в интернете доказательство гипотезы Пуанкаре — "задачи тысячелетия", за решение которой американский Институт Клэя назначил премию в миллион долларов. Математическому сообществу потребовалось время, чтобы признать достижение Перельмана. Однако вручить награду ученому так и не удалось: он отказался от нее, как ранее отказался от престижной медали Филдса. Несколько лет назад Перельман сообщил, что больше не занимается математикой, и свел к минимуму контакты с внешним миром.

Известный журналист и писатель, заместитель главного редактора проекта "Сноб" Маша Гессен исследует феномен Перельмана, опираясь на многочисленные интервью с его учителями, соучениками и коллегами. Особое место в книге отведено истории российских матшкол, воспитавших не одно поколение замечательных ученых и просто думающих людей. "Совершенная строгость" — первая книга Гессен, выходящая на русском языке.

Совершенная строгость. Григорий Перельман: гений и задача тысячелетия - читать онлайн бесплатно полную версию (весь текст целиком)

Совершенная строгость. Григорий Перельман: гений и задача тысячелетия - читать книгу онлайн бесплатно, автор Маша Гессен
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Представьте себе, насколько сложен обыденный язык для человека, который воспринимает все буквально. Язык — не просто удручающе неточный инструмент навигации по миру. Он умышленно неточен. Психолингвист Стивен Пинкер заметил, что "язык описывает пространство не так, как геометрия, и может иногда завести слушателя очень далеко". В речи, по мнению Пинкера, объекты обладают "первичным" и "вторичным" измерениями, ранжированными в соответствии с их важностью. Дорога представляется одномерной, как и, например, река или лента: все эти объекты обладают только протяженностью, как сегмент в планиметрии. "Понятия "слой" или "плита" имеют два первичных измерения, описывающих поверхность, и ограниченное вторичное измерение — толщину, — писал Линкер. — А у "трубки" или "балки" есть одно первичное измерение — протяженность — и два вторичных, придающих им объем".

Еще более серьезные затруднения с языком возникают, когда мы отделяем границы объектов от их содержания. Мы говорим, что ободок идет по краю тарелки, полагая оба объекта — и тарелку и ободок — двухмерными. Для педантичного ума это неверно. Ободок на самом деле не ограничивает тарелку (у тарелки есть край), тарелка имеет три измерения. В то же время такие слова, как конец и край, обозначают объекты, имеющие от ноля до трех измерений.

Хуже всего то, что небрежность в описании предметов сосуществует с непомерно большим количеством названий для них. Только в английском языке их около десяти тысяч, а во всех человеческих языках их разнообразие далеко выходит за рамки людской способности определить, что эти существительные обозначают. Для человека, стремящегося к точности, это возмутительно: как можно пользоваться существующими словами для обозначения вещей, когда мы не просто не можем их точно определить, но упорно определяем неправильно?

Возьмем, например, знаменитую ленту Мёбиуса — чтобы ее сделать, нужно соединить концы бумажной полоски, предварительно перевернув один из них. Лента Мёбиуса ставит язык в тупик. Можно двигаться вдоль ленты, как будто она представляет собой одномерный объект, по ленте, как если бы она была двухмерной, или даже, как в названии популярного мультфильма 2006 года, сквозь ленту — тогда она предстает трехмерным объектом. Для педантичного ума спасение кроется в геометрии, которая опирается на воображение и дает четкое определение каждой фигуре. На самом деле, геометрия, которую преподают в средней школе, с ее основными теоремами и точным инструментарием, представляет собой шаг вперед по сравнению с обыденной речью, однако вершиной геометрической четкости является топология.

Неслучайно лента Мёбиуса, которая ускользает от понимания, — один из первых известных объектов топологических исследований. "Ясно выраженный", с точки зрения топологии, не означает, что объект можно легко представить. Это значит, что объект обладает только теми свойствами, которые перечислены в его определении. У объекта есть определенное число измерений. Его можно ограничить и выровнять. Он может быть односвязным или не быть таковым (то есть может иметь или не иметь отверстия). Топологический объект может быть сферой: это означает, что все точки его поверхности находятся на равном расстоянии от его центра. Тополог уточнит: свойства сферы не изменятся, если ее смять. Сферу легко можно восстановить, а временной воображаемой деформацией пренебречь.

Ситуация меняется, если в сфере появляется отверстие. Тогда сфера перестает быть сферой и становится тором, поверхностью "бублика" — объектом с совершенно другими свойствами, который нельзя легко превратить в сферу. В мире топологов нет места глуповатым шуткам вроде той, которую любит цитировать Пинкер: "Что нужно положить в ведро, чтобы в нем стало светлее? Дырку!" Педанту просто не смешно: дырку нельзя никуда положить. Более того, появление в объекте отверстия (или дополнительного отверстия) изменит сам объект. В ведре светлее не станет, поскольку объект уже не будет ведром.

Обычно топологию начинают изучать в университете: эта область считается слишком абстрактной для школьников. Ум Перельмана — ум прирожденного математика, который не оперирует ни только образами, ни только цифрами, а мыслит системно и оперирует определениями. Он был создан для топологии. Начиная с восьмого класса (Перельману тогда было 13 лет) приглашенные лекторы иногда рассказывали в математическом кружке о топологии. Она манила Перельмана издалека, из-за пределов школьного курса геометрии, так же, как огни Бродвея влекут какую-нибудь юную актрису, которая заставляет зрителей пускать слезу на школьной постановке "Сиротки Энни".

Григорий Перельман был рожден, чтобы жить в топологической Вселенной. Он должен был усвоить все ее законы и дефиниции, чтобы стать арбитром в этом геометрическом трибунале и наконец объяснить аргументированно, четко и ясно, почему всякое односвязное компактное трехмерное многообразие без края гомеоморфно трехмерной сфере.

Рукшину же выпало стать проводником Перельмана, посланником из математического будущего, который должен был сделать ленинградскую жизнь Гриши Перельмана такой же безопасной и упорядоченной, как и в его воображаемом мире. Для этого Перельману нужно было попасть в ленинградскую физико-математическую школу № 239.

В то лето, когда Перельману исполнилось четырнадцать, он каждое утро отправлялся на электричке из Купчина в Пушкин, чтобы провести день с Рукшиным за изучением английского языка. План был таков: Перельман должен был за три месяца пройти четырехлетний курс английского языка, чтобы осенью поступить в 239-ю математическую спецшколу. Это был кратчайший путь к полному погружению в математику.

История математических школ начинается с Андрея Николаевича Колмогорова. Математик, оказавший неоценимую услугу государству во время Великой Отечественной, стал единственным из ведущих советских ученых, которого после войны не привлекли к работе в оборонке. Ученики до сих пор удивляются этому. Я вижу объяснение в гомосексуальности Колмогорова.

Человеком, с которым Андрей Колмогоров делил кров с 1929 года и до конца жизни, был тополог Павел Александров. Спустя пять лет после того, как они стали жить вместе, мужской гомосексуализм в СССР был объявлен вне закона. Колмогоров и Александров, называвшие себя друзьями, практически не делали секрета из своих отношений и тем не менее не имели проблем с законом.

Научный мир воспринимал Колмогорова и Александрова как пару. Они стремились вместе работать, вместе отдыхали в санаториях Академии наук и вместе слали продуктовые посылки в осажденный Ленинград. В последнем интервью, записанном в 1983 году для биографического документального фильма, 80-летний Колмогоров попросил режиссера Александра Марутяна, чтобы изображение дома, где математик жил с Александровым, сопровождалось ре- минорным концертом Иоганна Себастьяна Баха для двух скрипок.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Маша Гессен читать все книги автора по порядку

Маша Гессен - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Совершенная строгость. Григорий Перельман: гений и задача тысячелетия отзывы


Отзывы читателей о книге Совершенная строгость. Григорий Перельман: гений и задача тысячелетия, автор: Маша Гессен. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x