Валерий Августинович - Битва за скорость. Великая война авиамоторов
- Название:Битва за скорость. Великая война авиамоторов
- Автор:
- Жанр:
- Издательство:М. : Яуза : Эксмо, 2010. — 448 с.: ил.
- Год:2010
- ISBN:978-5-699-43214-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Валерий Августинович - Битва за скорость. Великая война авиамоторов краткое содержание
Борьба за господство в воздухе — это прежде всего ВОЙНА МОТОРОВ. Опыт Второй Мировой показал, что именно превосходство в скорости является решающим фактором в воздушном бою, а отставание СССР в моторостроении стало главной «ахиллесовой пятой» наших ВВС в Великой Отечественной войне. Вся история авиации есть ожесточенная БИТВА ЗА СКОРОСТЬ, а значит — за мощность авиадвигателей, по праву считающихся вершиной технологии и доказательством научно-технической состоятельности государства.
Эта книга — первое серьезное исследование великой войны моторов, продолжавшейся весь XX век и определившей развитие авиапромышленности, — от первых поршневых двигателей до новейших газотурбинных, от неуклюжих «этажерок», летавших со скоростью мопеда, до гиперзвуковых стратосферных суперджетов последнего поколения. Будучи признанным авторитетом в области проектирования авиационных двигателей с более чем 40-летним стажем, автор лично участвовал в этой битве за скорость, а его книга не только в высшей степени компетентна, но еще и на редкость увлекательна, читаясь как захватывающий технотриллер.
Битва за скорость. Великая война авиамоторов - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Какие дефекты были присущи звездообразным моторам воздушного охлаждения? Из их краткого описания и методов их устранения можно понять и сложность создания мотора. Малая плотность воздуха (в сравнении с водой) создавала проблему съема тепла и тем самым охлаждения цилиндров. Перегрев цилиндров и клапанов сопровождал всю историю моторов воздушного охлаждения. Эта проблема существенно усугублялась при постановке второго ряда звезды вслед за первым рядом, затеняющим этот второй ряд. Тот, кто видел эти моторы, наверняка заметил сложнейшую развитую систему ребер охлаждения цилиндров, которые увеличением площади теплоотдачи компенсировали малую плотность воздуха. Нужны сотни часов продувок десятков вариантов расположения ребер с измерением полей температуры, чтобы решить проблему (и то без гарантии). Например, для улучшения охлаждения был применен поворот головки цилиндра на 15° по отношению к вектору скорости набегающего воздуха. Это, в свою очередь, потребовало изменения кинематики классического клапанного механизма. Потребовалось разработать новые законы движения звеньев (рычагов, толкателей, тяг и др.) и профилей кулачков. Как мы увидим ниже, диаметр цилиндров авиамоторов более 160 мм не применялся именно из-за проблемы их перегрева. Количество выделяемого тепла в объеме цилиндра пропорционально кубу линейного размера, а съем тепла — только квадрату размера (площади). Этот «закон куба-квадрата», ограничивающий конструкторов, действует во многих технических системах. Учитывая многорежимность работы мотора и множество сочетаний высоты, скорости полета самолета, а также климатических условий эксплуатации (зима, лето), «настроить» пассивную систему охлаждения цилиндров для любого сочетания условий чрезвычайно сложно.
Вторым серьезным дефектом звездообразных моторов явилась их склонность к заклиниванию втулки подшипника, так называемого главного шатуна (в «звезде» все шатуны, кроме главного, являются прицепными к последнему, а все усилие на коленчатый вал передается через главный шатун). Очевидно, что с увеличением мощности эта проблема также усугублялась. Одно время казалось, что она вообще не имеет решения и ставит предел развиваемой мощности. В 1940 г. в КБ Швецова пригласили из ЦИАМ специалиста по подшипникам скольжения С. Н. Куцаева. Далее мы даем слово участнику этих событий инженеру КБ В. В. Даровских: «Изучив характер износа втулки главного шатуна и шатунной шейки коленчатого вала, он предложил образующую втулки выполнить по гиперболе с мнимой осью вдоль оси шатунной шейки с переменным подлине подшипника зазором, увеличивающимся от середины к краям. Однако первые испытания не показали улучшения работы. Анализ показал, что увеличенные зазоры у концов втулки приводили к вытеканию масла из подшипника. Для обеспечения нормального маслоснабжения были поставлены боковые кольца с отверстиями и пружинами, а от проворота втулка была зафиксирована шлицами. Кроме того, было введено многослойное покрытие трущейся поверхности втулки: никель, медь, серебро, индий. Проблема была решена» [10]. В решении проблемы этого конкретного дефекта мы видим и некую общую методологию решения — комплексный подход.
Не менее серьезными проблемами были задир поршней, износ цилиндров и колец, коробление седел клапанов, прогар выхлопного клапана. Решение этих проблем никто подсказать не мог — со всем этим справлялись конструкторы КБ. Простые копиисты стали бы в тупик при любом таком дефекте и запросили бы помощи из-за рубежа. Как вспоминал П. А. Соловьев, ставший преемником А. Д. Швецова в 1953 г.: «Вспоминается такой эпизод. Мы со Швецовым долгое время занимались бесступенчатой передачей для того, чтобы улучшить характеристики самолета, особенно для воздушного боя. Сделана была такая механическая передача: на валу вращается желоб, свернутый в кольцо. Одна половинка на одной стороне, вторая — на другой, а между ними ролик. И в зависимости от положения ролика идет передача с большего на меньшее и наоборот. А поскольку вы можете менять положение ролика бесконечно, то и этих передач получается бесконечно много. Сложные, конечно, устройства, но все-таки работали, на моторе работали. Я помню, как-то вечером поставили на испытания очередную конструкцию и произошла поломка привода, раскололся корпус, редуктор, шестерни высыпались, как из мешка. А договорились, чтобы я позвонил Аркадию Дмитриевичу, как только первую гонку сделаем. Я позвонил ему. «Ну как?» — «Так сломалась, сломалась крупно». — «А кто-нибудь пострадал?» — «Нет». — «Ну и хорошо. А чего ты расстраиваешься? Думал, обойдешься без этого вообще? Такого не бывает. Давай все это запломбируй, чтобы ночью не возиться, а с утра разбирайтесь, что произошло».( Соловьев П. А. О времени и о себе ).
Чем опытный инженер отличается от неопытного при разработке новой принципиально конструкции? Оба, по большому счету, ни черта не знают. Но… опытный инженер не боится, знает, что предстоит доводка (а любой эксперимент — это и вопрос, и ответ, лучше бы, конечно, только ответ), а неопытный — боится. И еще: опытный инженер быстрее учится на своих ошибках.
Идея четырехтактного цикла впервые была предложена французским инженером Альфонсом Бо де Роша (Beau de Rochas) в 1861 г.:
«Поставленная задача имела, очевидно, единственно практически правильным конструктивным решением применение только одного цилиндра, во-первых, для того, чтобы последний имел максимально возможные размеры, во-вторых, чтобы уменьшить до абсолютного минимума сопротивление газов движению. Это, естественно, приводит к осуществлению в одной и той же полости цилиндра в течение четырех последовательных ходов поршня следующих процессов:
1. Всасывание в течение целого хода поршня.
2. Сжатие в течение следующего хода.
3. Воспламенение в мертвой точке и расширение в течение третьего хода.
4. Выталкивание сгоревших газов из цилиндра на четвертом и последнем ходе» ( Beau de Rochas «Nouvelles recherches», p. 30. Цит. по Гюльднер, с. 730 ).
Однако приоритет реализации этого цикла принадлежит немецкому инженеру Николаусу Отто. Модификацию этого цикла разработал его соотечественник Рудольф Дизель. Промышленное производство поршневых двигателей внутреннего сгорания организовали тоже немцы — Карл Бенц и Готтлиб Даймлер. Даймлер и запатентовал V-образную схему расположения цилиндров мотора. Революционным было и изобретение Робертом Бошем искровой системы зажигания током высокого напряжения от магнето в конце 1880-х гг. Только появление таких эффективных (большой удельной — на единицу массы — мощности) двигателей внутреннего сгорания позволило создать возможность рождения таких аппаратов тяжелее воздуха, как самолет и вертолет. Это произошло в конце XIX века. Доминирование эры воздухоплавания (аппараты легче воздуха) и тяжелых двигателей внешнего сгорания (паровых машин) закончилось. Попытки продлить жизнь коммерческому и военному воздухоплаванию с помощью дирижаблей продолжались до аварии (пожара) пассажирского «водородного» «Гинденбурга» в Нью-Йорке в мае 1937 г. при швартовке после перелета через Атлантику.
Читать дальшеИнтервал:
Закладка: