Геннадий Горелик - Андрей Сахаров. Наука и свобода
- Название:Андрей Сахаров. Наука и свобода
- Автор:
- Жанр:
- Издательство:Вагриус
- Год:2004
- Город:Москва
- ISBN:5-475-00017-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Геннадий Горелик - Андрей Сахаров. Наука и свобода краткое содержание
Эта книга — первая биография «отца советской водородной бомбы» и первого русского лауреата Нобелевской премией мира. В ее основе — уникальные, недавно рассекреченные архивные документы и около пятидесяти интервью историка науки Геннадия Горелика с людьми, лично знавшими А.Д. Сахарова еще студентом, затем — выдающимся физиком и, наконец, опальным правозащитником.
Впервые в книге даны ответы на вопросы, как и почему главный теоретик советского термоядерного оружия превратился в защитника прав человека? Была ли советская водородная бомба создана физиками самостоятельно или при помощи разведки? Что общего между симметрией бабочки и асимметрией Вселенной? Как Андрей Сахаров смотрел на свою судьбу и что думал о соотношении научного мышления и религиозного чувства?
Андрей Сахаров. Наука и свобода - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Для теоретиков, с тех пор как Дирак предсказал в 1931 году существование античастиц, вещество и антивещество имели равное право на существование. «Имели равное право» чисто теоретически. А практически, после того как экспериментатор Карл Андерсон открыл в 1932 году первую античастицу — антиэлектрон (позитрон), следующую античастицу — антипротон — удалось наблюдать только через три десятилетия. И всего несколько лет назад экспериментаторы сумели из антипротонов и антиэлектронов сделать первые, простейшие, антиатомы — атомы антиводорода. Сделали всего девять штук. И жизнь этих атомов длилась лишь миллиардные доли секунды — до первой встречи с обычным веществом и, увы, аннигиляции.
Поясняя в популярной статье, что такое антивещество, Сахаров привел пример: аннигиляция 0,3 г антивещества с 0,3 г вещества даст эффект взрыва атомной бомбы», [362] Сахаров А.Д. Симметрия Вселенной (Будущее науки. М.: Знание, 1967) // Научные труды. М., 1995, с. 369.
— вторая профессия дала себя знать. Так что соприкосновение двух маленьких таблеток произвело бы такой же силы взрыв, как 20 тысяч тонн — десяток эшелонов — обычной взрывчатки.
После такого пояснения сразу пропадает сочувствие к экспериментаторам, создающим антиатомы. Представить только, что антивещество было бы легче изготовить!..
Но остается и даже усиливается сочувствие к теоретикам. Ведь все эксперименты с античастицами ничего не изменили в том теоретическом равноправии вещества и антивещества, о котором теоретики узнали еще в 30-е годы. Как же им свести концы с концами — теоретические с эмпирическими? Как объяснить, что равноправные вещество и антивещество так неравно представлены во Вселенной?
Наиболее весомую часть вещества составляют ядерные частицы — протоны, нейтроны и их близкие родственники. Это семейство — барионы. И видимое отсутствие антибарионов физики называют барионной асимметрией Вселенной .
Пока физики смотрели на Вселенную просто как на собрание всевозможных астрономических объектов, можно было думать, что только в космических окрестностях Земли так сильно преобладает вещество, а где-то есть и звезды, и планеты из антивещества.
Астрофизики искали признаки антивещества в космосе. Писатели-фантасты устраивали драматические встречи земного космического корабля с неземным и — вполне возможно! — состоящим из антивещества. А шутники предложили свой способ узнать, не из антимира ли прилетел корабль, если среди физиков на борту корабля преобладают антисемиты.
Ситуация сильно изменилась после открытия в 1965 году реликтового космического излучения. Даже скептики поверили, что к Вселенной можно относиться как к единому физическому объекту со своей историей, определяемой законами физики. Стало ясно, что Вселенная когда-то была очень горячей. Оставшееся от того времени реликтовое излучение остыло до температуры, лишь на 3 градуса отстоящей от абсолютного нуля, но зато этого излучения очень много, оно заполняет все пространство Вселенной. А обычное вещество сосредоточено в звездах и планетах, разделенных огромными расстояниями.
Если излучение и вещество пересчитать на частицы — фотоны и барионы, то окажется, что сейчас на один барион приходится около миллиарда сегодняшних, «еле теплых» фотонов.
А что было вчера? Вчера, когда Вселенная была меньше в размерах, фотоны — по законам физики излучения — были горячее. А если углубиться в прошлое достаточно далеко, то был и такой момент, когда энергии среднего фотона уже (еще) хватало, чтобы родить пару барион — антибарион. До этого момента фотоны легко превращались в такие пары, а всякая пара при встрече так же легко превращалась в фотоны — аннигилировала. Поэтому в то горячее время подобных пар было примерно столько же, сколько фотонов. А значит, пар барион — антибарион было в миллиард раз больше, чем дошедший до наших дней избыток барионов над антибарионами. Это барионы, которые остались после того, как все пары барион — антибарион аннигилировали в фотоны, и те в процессе расширения остыли настолько, что их энергии уже не хватало на рождение новой пары.
Это означает, что в очень молодой и горячей Вселенной барионов было всего на одну миллиардную часть больше, чем антибарионов. Так что барионная асимметрия, присущая природе, на самом деле не просто маленькая, а вызывающе маленькая.
Сахарову, во всяком случае, было «трудно представить себе», чтобы изначально, по природе вещей, на 1000 000 000 фотонов, приходилось столько же — 1000 000 000 — антибарионов, а барионов всего на одну штуку больше 1000 000 001.
Такие изначальные числа, на взгляд Сахарова,
режут глаз, такого не может быть <> Именно это обстоятельство (как видит читатель, из области интуиции, а не дедукции) и было исходным стимулом для многих работ по барионной асимметрии, в том числе и моей.
Было оно стимулом и для Стивена Вайнберга, нобелевского лауреата 1979 года и автора бестселлера о первых трех минутах Вселенной. В 1977 году он писал:
Число барионов, приходившееся на один фотон, могло вначале иметь какую-то разумную величину, возможно, близкую к единице, а затем могло упасть до нынешнего малого значения из-за образования многих фотонов. Загвоздка здесь в том, что никому не удалось предложить механизм образования таких лишних фотонов. Несколько лет тому назад я сам пытался что-нибудь придумать в этом роде, но безуспешно. [363] Вайнберг С. Первые три минуты: Современный взгляд на происхождение Вселенной / Пер. с англ. под. ред. с пред. и доп. акад. Я.Б. Зельдовича. М.: Энергоиздат, 1981, с. 95; Weinberg, Steven. The first three minutes: а modern view of the origin of the universe. New York: Basic Books, 1977, p. 97.
Поэтому Вайнберг решил игнорировать все «нестандартные возможности» и принял барионную асимметрию как факт, не поддающийся объяснению.
К выходу книги Вайнберга на русском языке в 1981 году, однако, обнаружилось, что зря он проигнорировал нестандартную возможность, указанную Сахаровым в 1967 году [364] Сахаров А.Д. Нарушение CP-инвариантности, C-асимметрия и барионная асимметрия Вселенной (Письма в ЖЭТФ 1967) // Сахаров А.Д. Научные труды. М.: Центрком, 1995, с. 219.
Зельдович, под редакцией которого выходил русский перевод книги Вайнберга, посвятил этой возможности специальное дополнение.
Но и сам Зельдович, первым узнавший о сахаровской работе, долго считал ее слишком нестандартной, чтобы быть правильной. Сахаров вспоминает свой разговор с ним в 1967 году:
Яков Борисович спросил, какая из моих чисто теоретических работ больше всего мне нравится. Я сказал: «Барионная асимметрия Вселенной». Он как-то весь сморщился, сжался: «Это та работа, где барионный заряд не сохраняется и время течет в обратную сторону?» — «Да, та самая». Зельдович промолчал, но было ясно, что он сильно сомневается в ценности этих моих идей.
Читать дальшеИнтервал:
Закладка: