Александр Фомин - 10 гениев науки
- Название:10 гениев науки
- Автор:
- Жанр:
- Издательство:Фолио
- Год:2008
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Фомин - 10 гениев науки краткое содержание
С одной стороны, мы старались сделать книгу как можно более биографической, не углубляясь в научные дебри. С другой стороны, биографию ученого трудно представить без описания развития его идей. А значит, и без изложения самих идей не обойтись. В одних случаях, где это представлялось удобным, мы старались переплетать биографические сведения с научными, в других — разделять их, тем не менее пытаясь уделить внимание процессам формирования взглядов ученого. Исключение составляют Пифагор и Аристотель. О них, особенно о Пифагоре, сохранилось не так уж много достоверных биографических сведений, поэтому наш рассказ включает анализ источников информации, изложение взглядов различных специалистов. Возможно, из-за этого текст стал несколько суше, но мы пошли на это в угоду достоверности. Тем не менее мы все же надеемся, что книга в целом не только вызовет ваш интерес (он уже есть, если вы начали читать), но и доставит вам удовольствие.
10 гениев науки - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Можно с уверенностью сказать: пока существует физика, ни у кого больше не хватит сил выступить с тремя такими работами в течение одного года».
Очевидно, что о работах Пуанкаре 1905 года Эйнштейн знать не мог. Не знал он весной 1905 года и о преобразованиях Лоренца. Теперь перейдем к ходу его рассуждений, изложенных в статье «К электродинамике движущихся тел». Для начала он самостоятельно, независимо от Пуанкаре, формулирует специальный принцип относительности. Затем вводит второй постулат: скорость света в вакууме постоянна и не зависит от скорости движения его источника (или наблюдателя). Этот постулат вполне отвечает волновым представлениям о свете и подтверждается опытами Майкельсона. Интересно, что, взяв от волновой гипотезы такое утверждение, Эйнштейн тут же отказался от гипотезы светового эфира. Ранее эти гипотезы были неразрывны. Одна статья нашего героя привела к тому, что доминировавшая длительное время гипотеза светоносного эфира сдала свои позиции. Впоследствии некоторые ученые пытались реанимировать ее. Даже в наше время предпринимаются такие попытки, но оправиться от удара, нанесенного Эйнштейном, гипотеза эфира так и не смогла. Затем, основываясь на введенных постулатах, ученый делает целый ряд неожиданных и поразительных выводов. Для начала он расправляется с понятием «абсолютной одновременности». Если бы передаваемые сигналы могли распространяться моментально, то понятие «абсолютная одновременность» для двух событий, происходящих в разных точках пространства, было бы вполне правомерным. Но поскольку максимальная скорость передачи информации ограничивается скоростью света, говорить об «абсолютной одновременности» каких-то событий невозможно. Здесь налицо идеи Маха. Важным является не сам момент события в ньютоновском «абсолютном времени», а момент получения информации о событии.
Дальше Эйнштейн принимается за понятие времени вообще. Он пишет: «Желая описать движение какой-нибудь материальной точки, мы задаем значения ее координат как функций времени. При этом следует иметь в виду, что подобное математическое описание имеет физический смысл только тогда, когда предварительно выяснено, что подразумевается здесь под "временем". Мы должны обратить внимание на то, что все наши суждения, в которых время играет какую-либо роль, всегда являются суждениями об одновременных событиях. Если я, например, говорю: "Этот поезд прибывает сюда в 7 часов", — то это означает примерно следующее: "Указание маленькой стрелки моих часов на 7 часов и прибытие поезда суть одновременные события"».
Но понятие об «абсолютной одновременности» событий разрушено. Следовательно, ньютоновское «абсолютное время», одинаковое во всех точках пространства, также неправомерно. Для каждой системы отсчета существует свое «локальное время». Свои рассуждения Эйнштейн иллюстрирует мысленными физическими экспериментами. (К сожалению, у нас нет возможности рассмотреть их из-за ограниченного объема книги. Популярное изложение мысленных экспериментов, объясняющих теорию относительности, можно найти в научно-популярной литературе.) Дальше — больше. Как пишет Б. Хофман в своей книге «Альберт Эйнштейн: творец и бунтарь»: «Ведь время относится к фундаментальным понятиям, и коренное изменение нашего представления о нем разрушает все здание теоретической физики, как карточный домик. И в этом крахе не уцелеет ничего».
Участь «абсолютной одновременности» и «абсолютного времени» постигает понятия «абсолютного движения», «абсолютного расстояния». Все они теряют смысл. Теперь время, движение, расстояния можно рассматривать только в рамках каждой конкретной инерциальной системы отсчета [106] Инерциальная система отчета — система отсчета, в которой справедлив закон инерции: материальная точка, на которую не действуют никакие силы, находится в состоянии покоя или равномерного прямолинейного движения. Любая система отсчета, движущаяся относительно инерциальной системы отсчета поступательно, равномерно и прямолинейно, также является инерциальной системой отсчета.
, то есть становятся относительными. Хофман пишет: «И видимо, эту „эпидемию относительности остановить невозможно. Скорость, ускорение, сила, энергия — все эти понятия (и не только они) зависят от времени и расстояния; таким образом, изменилась сама структура физики».
Но если это так, спрашивается, каким образом можно рассматривать в рамках одной инерциальной системы отсчета процессы, происходящие в другой? Для этого Эйнштейн самостоятельно приходит к уравнениям преобразования Лоренца.
Например, формула
показывает, во сколько раз процессы в теле, движущемся со скоростью v относительно некоторой инерциальной системы отсчета, протекают медленнее, чем в данной инерциальной системе. Подобные формулы вводятся для длины и массы. Одним из важнейших достижений Эйнштейна считается то, что он ввел в качестве универсальной постоянной во все основные законы физики скорость света в вакууме, сейчас обозначаемую буквой с. Также необходимо отметить, что в конце статьи ученый благодарит Микеланджело Бессо, своего друга, с которым он познакомился в Цюрихе и который был принят на работу в Бюро патентов по настоянию Альберта: «В заключение я хотел бы сказать, что, работая над исследуемой здесь проблемой, я опирался на преданную помощь моего друга и коллеги М. Бессо и обязан ему несколькими предложениями».
В конце сентября Эйнштейн отправил в «Annalen der Physik» еще одну трехстраничную статью-дополнение «Зависит ли инерция тела от содержащейся в нем энергии?». В ней ученый на основании уравнений из своей предыдущей статьи вывел формулу, в которой связывал энергию, выделяемую телом, с изменением его массы:
Формула выведена для выделения энергии в виде света, но Эйнштейн предполагает ее универсальность — независимость от формы выделяемой энергии. Также в этой статье ученый настаивает на том, что любая энергия обладает массой. Только через два года он смог сделать обратный вывод: всякая масса обладает энергией. Энергия и масса эквивалентны. Следующий шаг — знаменитая формула:
Эта формула позволила свести воедино законы сохранения энергии и массы. Свои рассуждения и выводы Эйнштейн опубликовал в 1907 году.
Пожалуй, первым крупным ученым, который оценил значение специальной теории относительности, стал Макс Планк. Летом 1907 года маститый немецкий физик написал 28-летнему работнику Бюро патентов длинное письмо, в котором были следующие строки: «Я, вероятно, отправлюсь в будущем году в горы в окрестностях Берна. Пусть это произойдет еще не скоро, но сама мысль об удовольствии лично с Вами познакомиться делает меня счастливым».
Читать дальшеИнтервал:
Закладка: