Елена Кочемировская - 10 гениев, изменивших мир

Тут можно читать онлайн Елена Кочемировская - 10 гениев, изменивших мир - бесплатно ознакомительный отрывок. Жанр: Биографии и Мемуары, издательство Литагент «Фолио»3ae616f4-1380-11e2-86b3-b737ee03444a, год 2008. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Елена Кочемировская - 10 гениев, изменивших мир краткое содержание

10 гениев, изменивших мир - описание и краткое содержание, автор Елена Кочемировская, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Эта книга посвящена людям, не только опередившим время, но и сумевшим своими достижениями в науке или общественной мысли оказать влияние на жизнь и мировоззрение целых поколений. Невозможно рассказать обо всех тех, благодаря кому радикально изменился мир (или наше представление о нем), речь пойдет о десяти гениальных ученых и философах, заставивших цивилизацию развиваться по новому, порой неожиданному пути. Их имена – Декарт, Дарвин, Маркс, Ницше, Фрейд, Циолковский, Морган, Склодовская-Кюри, Винер, Ферми. Их объединяли безграничная преданность своему делу, нестандартный взгляд на вещи, огромная трудоспособность. О том, как сложилась жизнь этих удивительных людей, как формировались их идеи, вы узнаете из книги, которую держите в руках, и наверняка согласитесь с утверждением Вольтера: «Почти никогда не делалось ничего великого в мире без участия гениев».

10 гениев, изменивших мир - читать онлайн бесплатно ознакомительный отрывок

10 гениев, изменивших мир - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Елена Кочемировская
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Декарт использует геометрический (правильнее – аксиоматический) метод, формулируя несколько правил. Задачу следует разделить на более простые части, решить их по отдельности до конца, синтезировать это решение в общее представление:

«1. Не признавать истинным ничего, кроме того, что с очевидностью познается мною таковым, т. е. тщательно избегать поспешности и предубеждений и принимать в свои суждения только то, что представляется моему уму так ясно и отчетливо, что ни в коем случае не возбуждает во мне сомнения.

2. Разделять каждое из рассматриваемых мною затруднений на столько частей, на сколько возможно и сколько требуется для лучшего их разрешения.

3. Мыслить по порядку, начиная с предметов наиболее простых и легко познаваемых, и восходить мало-помалу, как по ступеням, к познанию наиболее сложных, допуская существование порядка даже среди тех, которые не следуют естественно друг за другом.

4. Составлять повсюду настолько полные перечни и такие общие обзоры, чтобы быть уверенным, что ничего не пропущено».

Видимая «простота» метода опирается на сложные философские допущения, предложенные Декартом. Руководствуясь ими, ученый приходит к своим математическим идеям. Вот как он сам описывает этот путь в «Рассуждении о методе»: «Мне не стоило большого труда отыскание того, с чего следует начинать, так как я уже знал, что начинать надо с самого простого и доступного пониманию; учитывая, что среди всех, кто ранее исследовал истину в науках, только математики смогли найти некоторые доказательства, т. е. представить доводы несомненные и очевидные, я уже не сомневался, что начинать надо именно с тех, которые исследовали они… Но я не имел намерения изучать на этом основании все отдельные науки, обычно именуемые математикой. Видя, что хотя их предметы различны, но все же они сходны между собой в том, что рассматривают не что иное, как различные встречающиеся в предметах отношения, я подумал, что мне необходимо лучше исследовать эти отношения вообще, мысля их не только в тех предметах, которые облегчали бы мне их познание, и никоим образом не связывая с этими предметами, чтобы тем лучше применить их потом ко всем другим, к которым они подойдут. Затем, приняв во внимание, что для изучения этих отношений мне придется рассматривать каждое из них в отдельности и лишь иногда запоминать или истолковывать их по несколько вместе, я подумал, что для лучшего рассмотрения их в отдельности я должен представить их себе в виде линий, потому что я не находил ничего более простого, что я мог бы представить себе более отчетливо в своем воображении и ощущении. Но для того, чтобы лучше удержать их в памяти или сосредоточить внимание сразу на нескольких, надо выразить их какими-то возможно более краткими знаками. Благодаря такому способу я мог заимствовать все лучшее в геометрическом анализе и в алгебре и исправить все недостатки одного при помощи другой».

Главным открытием Декарта в математике подавляющее большинство ученых считает, конечно, легендарную систему координат, получившую впоследствии название декартовой. Хотя система, разработанная непосредственно Декартом, еще значительно отличалась от современной – он берет некоторую прямую с фиксированной точкой отсчета и рассматривает кривую относительно этой прямой. Положения точек кривой задаются с помощью системы параллельных отрезков, наклонных или перпендикулярных к исходной прямой. Декарт не вводит второй координатной оси. Не фиксирует он и направления отсчета от начала координат. Отрицательные абциссы не рассматриваются. У кривой, заданной уравнением f (x,y) = 0, ординаты точек, расположенных по одну сторону от исходной прямой, названы «истинными», а расположенных по другую – «ложными» корнями этого уравнения.

Такой же подход к вопросу сохранялся и у последователей Декарта. Только в XVIII веке сформировалось современное понимание координатной системы, но шаг, сделанный Декартом, сыграл определяющую роль в истории аналитической геометрии.

Далеко не все авторы, пишущие об истории математики, отдают этому ученому должное. Ведь примерно в то же самое время основные положения аналитической геометрии независимо от Декарта выдвинул великий Пьер Ферма, а что касается алгебраической символики, то ее давно уже использовал другой знаменитый французский математик Франсуа Виет. Между тем, Декарт создал нечто несравненно большее, чем аналитическая геометрия (понимаемая как теория кривых на плоскости) – он произвел революцию в математике, разработав новый подход к описанию явлений действительности: современный математический язык.

Иногда говорят, что Декарт «свел геометрию к алгебре», понимая под последней, конечно, алгебру числовую, арифметическую. Это грубая ошибка. Верно, что Декарт преодолел пропасть между величиной и числом, между геометрией и арифметикой, но достиг он этого не сведением одного языка к другому, а созданием нового языка – языка алгебры. По синтаксису новый язык совпадает с арифметической алгеброй, но по семантике – с геометрической. Символы в языке Декарта обозначают не числа и не величины, а отношения величин. В этом – вся суть переворота, произведенного им.

Мы настолько привыкли ставить иррациональные числа на одну доску с рациональными, что перестали отдавать себе отчет в том, какое глубокое различие лежит между ними. Мы вкладываем в 2 такой же смысл, как и в 4/5, и называем 2 числом. Но если немного подумать, то нельзя не согласиться с греками, что 2 можно представить как бесконечный процесс, порождающий последовательные знаки разложения в десятичную дробь. Значит ли это, что математики совершают ошибку, обращаясь с 2 как с числом? Нет, ведь цель математики – создание языковых моделей действительности. И почему в языке наряду со знаками типа 4/5 не может быть знаков типа 2? Важно только уметь правильно интерпретировать их и оперировать ими.

Так что никакой принципиальной разницы между 2 и 4/5 нет – и для современного человека это вполне очевидно. Однако на протяжении многих веков, отделяющих античность от Нового времени, эту «мудрость» протаскивали контрабандой. Обосновал и узаконил ее Декарт.

Кроме того, ученый является одним из авторов теории уравнений. Им впервые было сформулировано правило знаков для определения числа положительных и отрицательных корней; поставлен вопрос о границах действительных корней; выдвинута проблема приводимости, т. е. представления целой рациональной функции с рациональными коэффициентами в виде произведения двух функций этого рода; указано, что уравнение 3-й степени разрешимо в квадратных радикалах (а также указано решение с помощью циркуля и линейки, если это уравнение приводимо). Декарт также сформулировал теорему о том, что число корней уравнения равно числу единиц в наивысшем показателе степени х. При этом учитываются не только положительные (истинные) и отрицательные (ложные) корни, но и мнимые (воображаемые). Истинные корни возникают из двучлена вида х – а, ложные вида х + а.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Елена Кочемировская читать все книги автора по порядку

Елена Кочемировская - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




10 гениев, изменивших мир отзывы


Отзывы читателей о книге 10 гениев, изменивших мир, автор: Елена Кочемировская. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x