Хоакин Наварро - Том 37. Женщины-математики. От Гипатии до Эмми Нётер

Тут можно читать онлайн Хоакин Наварро - Том 37. Женщины-математики. От Гипатии до Эмми Нётер - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Хоакин Наварро - Том 37. Женщины-математики. От Гипатии до Эмми Нётер краткое содержание

Том 37. Женщины-математики. От Гипатии до Эмми Нётер - описание и краткое содержание, автор Хоакин Наварро, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.

Том 37. Женщины-математики. От Гипатии до Эмми Нётер - читать онлайн бесплатно полную версию (весь текст целиком)

Том 37. Женщины-математики. От Гипатии до Эмми Нётер - читать книгу онлайн бесплатно, автор Хоакин Наварро
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ада не ограничилась простыми вычислениями: при правильной последовательности инструкций машина Бэббиджа могла, например, сочинять музыку. Более того, по словам Ады, «аналитическая машина вышивала алгебраические узоры так же, как станок Жаккара вышивает цветы и листья».

В станке Жаккара с помощью отверстий, проделанных в плоских перфокартах по определенной схеме, указывалось, как именно должны проходить нити, и в итоге на ткани появлялись цветные рисунки. Аналогичным образом можно было хранить инструкции, описывающие вычисления. Один набор перфокарт определял элементарные операции, другой указывал, в каком порядке и когда именно следует эти операции выполнять. Ада даже придумала остроумный способ, который позволял повторно использовать перфокарты, описывающие простые и повторяющиеся операции (говоря современным языком, Ада описала циклы программы). Так родилось понятие подпрограммы.

Ада поняла очень важный момент: машина Бэббиджа может работать не только с простыми конкретными числами, но и с символами. Теперь речь шла о настоящих вычислениях в современном смысле этого слова.

Ада всегда утверждала, что аналитическая машина не способна чудесным образом создать что-либо самостоятельно. Да, она могла поразить воображение, но ее «творческие способности» были ограничены творческими способностями ее создателей. Как гласит пословица, «из пустого ничего нельзя взять», что есть не более чем изложение второго начала термодинамики популярным языком. Ни «Я, робот», ни «Терминатор» в нашей Вселенной существовать не могут.

Станок Жаккара работающий на перфокартах ЧИСЛА БЕРНУЛЛИ К - фото 42

Станок Жаккара, работающий на перфокартах.

* * *

ЧИСЛА БЕРНУЛЛИ

К сожалению, здесь нам не хватит места, чтобы рассказать о числах Бернулли настолько подробно, как они того заслуживают. Эти числа названы в честь Якоба Бернулли(1654–1705) , который ввел их при изучении сумм n-х степеней mпервых чисел:

Эта сумма в сокращенном виде записывается так Числа В к которые всегда будут - фото 43

Эта сумма в сокращенном виде записывается так:

Числа В к которые всегда будут рациональными называются числами Бернулли - фото 44

Числа В к, которые всегда будут рациональными, называются числами Бернулли. Первые числа Бернулли таковы:

Их можно вычислить по рекурсивному алгоритму например с помощью формулы Эту - фото 45

Их можно вычислить по рекурсивному алгоритму, например с помощью формулы:

Эту формулу можно описать конечной последовательностью действий или - фото 46

Эту формулу можно описать конечной последовательностью действий, или алгоритмом. Именно так поступила Ада Лавлейс: она определила упорядоченную последовательность действий, позволяющих вычислить любое число Бернулли на машине Бэббиджа. Ее беспокоила не эффективность алгоритма, а лишь возможность его выполнения.

Логично, что последовательность чисел Бернулли бесконечна. Нечетные числа Бернулли для n> 2 равны нулю; значения остальных чисел Бернулли хаотичны, и сегодня не существует метода, позволяющего предсказывать их значения. Они тесно связаны с дзета-функцией Римана и считается, что в будущем эти числа сыграют крайне важную роль в теории чисел.

В интернете существуют прекрасные сайты, посвященные числам Бернулли, с помощью которых можно узнать совершенно непостижимые вещи: так, знаменатель несократимой дробной части числа В 10000000 содержит 394815332706046542049668428841497001870 цифр. Это знание может показаться бесполезным, но никогда не знаешь, что и когда может пригодиться.

* * *

ЯЗЫКИ, ПРОГРАММЫ И ПОДПРОГРАММЫ

Первое, что необходимо вычислительной машине, чтобы начать работу, — это понять, чего хочет пользователь. Эта задача решается с помощью языков программирования, которые, разумеется, изобрела не Ада Лавлейс. Далее необходимо схематично описать и упорядочить инструкции так, чтобы считывающие устройства машины могли последовательно считать их. После того как мы зададим начальные условия с помощью набора переменных, машина сможет работать самостоятельно. Если мы изменим начальные значения переменных, то, в общем случае, результат работы машины также изменится. Вычисления будут отличаться, однако описывающие их инструкции останутся неизменными. Одно и то же множество инструкций позволяет выполнить множество вычислений. Эти инструкции представляют собой элементарную программу. Именно программы почти что изобрела Ада (другие считают, что Бэббидж опередил ее на несколько лет) и применила свое изобретение для вычисления чисел Бернулли.

В рамках программы могут быть выделены подпрограммы — фрагменты, которые описывают повторно выполняемые операции и используются множество раз. Они могут храниться в ячейках памяти, и к ним можно обращаться по мере необходимости.

Если гипотетическая вычислительная машина выполняет умножение, то полный алгоритм умножения будет программой, а таблица умножения, например, на 3 — подпрограммой.

Неполный фрагмент аналитической машины Бэббиджа Возможно пришло время - фото 47

Неполный фрагмент аналитической машины Бэббиджа.

* * *

Возможно, пришло время разрушить не слишком реалистичный образ романтичной графини, увлекавшейся математикой. Личная жизнь Ады была достаточно типичной для графини викторианской эпохи: она любила спектакли и танцы, была несколько равнодушна к детям, а порой и к супружескому долгу, коллекционировала украшения и держала множество собак. Ада наверняка страдала какой-то разновидностью биполярного расстройства, так как периоды маниакальной гиперактивности чередовались у нее с приступами депрессии.

Среди друзей графини и тех, с кем она состояла в переписке, были Чарльз Диккенс, Чарльз Уитстон (известный специалист по электричеству), Дэвид Брюстер (изобретатель калейдоскопа) и Майкл Фарадей. С годами она познала искусство кокетства и наверняка имела нескольких поклонников: ее муж позднее уничтожил свыше ста писем, которые счел неподобающими. Вместе с Бэббиджем она открыла для себя очарование ставок на бегах и даже, отчасти сама того не осознавая, связалась с профессиональными игроками, в частности с неким Джоном Кроссом. Они впутали графиню в свои темные дела, и Ада оказалась в долгах. Ее можно по праву вслед за Бэббиджем назвать повелительницей чисел, но стоит заметить, что после смерти она оставила долгов по ставкам на 2 тысячи фунтов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Хоакин Наварро читать все книги автора по порядку

Хоакин Наварро - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 37. Женщины-математики. От Гипатии до Эмми Нётер отзывы


Отзывы читателей о книге Том 37. Женщины-математики. От Гипатии до Эмми Нётер, автор: Хоакин Наварро. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x