М. Рузе - Роберт Оппенгеймер и атомная бомба

Тут можно читать онлайн М. Рузе - Роберт Оппенгеймер и атомная бомба - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство Госатомиздат, год 1963. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Роберт Оппенгеймер и атомная бомба
  • Автор:
  • Жанр:
  • Издательство:
    Госатомиздат
  • Год:
    1963
  • Город:
    Москва
  • ISBN:
    5-7001-0254-4
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

М. Рузе - Роберт Оппенгеймер и атомная бомба краткое содержание

Роберт Оппенгеймер и атомная бомба - описание и краткое содержание, автор М. Рузе, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге французского прогрессивного публициста М. Рузе «Роберт Оппенгеймер и атомная бомба» описываются события, связанные с развитием работ в области ядерной физики, завершившихся созданием в Соединенных Штатах ядерного оружия.

Роберт Оппенгеймер и атомная бомба - читать онлайн бесплатно полную версию (весь текст целиком)

Роберт Оппенгеймер и атомная бомба - читать книгу онлайн бесплатно, автор М. Рузе
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Бор предполагал, что орбиты электронов внутри атома представляют собой окружности. Зоммерфельд вывел уравнения движения применительно к эллиптическим орбитам, рассматривая модель атома в виде маленькой планетарной системы. Вооруженные этими уравнениями, физики получили возможность, зная атомное число элемента (т.е. число положительных зарядов ядра и соответственно количество электронов), точно предсказывать дозволенные орбиты электронов и частоты излучений, испускаемых электронами при перескакивании с одной орбиты на другую.

Луи де Бройль и волновая механика

Проверка квантовой механики на атоме водорода, содержащем только один электрон, показала совпадение результатов теории и эксперимента. Спектр излучения оказался точно таким, как предсказывали расчетные данные. Однако это превосходное соответствие было, к сожалению, нарушено, когда теорию попытались применить к спектру атома гелия, содержащего два электрона. Физики были вынуждены снова вернуться к чисто математическому описанию наблюдавшихся явлений, удаляясь все дальше и дальше от классических представлений. Это направление, возглавляемое прежде всего Луи де Бройлем, Гейзенбергом и Шредингером, привело к созданию новой революционной теории – волновой механики. Новая система позволила не только обосновать уже известные факты, но предсказала другие, которые были впоследствии подтверждены опытом; кроме того, она объяснила большую часть химических явлений. Вот к этому периоду развития физики и относится начало работы Роберта Оппенгеймера в европейских университетах. Используя могущественное «Сезам, откройся!» – волновую механику, а также все более мощные приборы для наблюдения, физики ринулись в исследования внутриатомной вселенной с тем пылом и жаждой предпринимательства, которые некогда вели конквистадоров к завоеванию сказочных земель.

Основная идея волновой механики заключается в том, что вещество, как и свет, сочетает в себе одновременно свойства волны и частицы, или, если вернуться к первой формулировке Луи де Бройля, любая частица связана с волной. Это справедливо не только для фотонов, которые составляют природу света, но также и для частиц, входящих в состав вещества, например для электронов. Существование волны, связанной с электронами, позволяет догадываться о причине того, почему в структуре, атома возможны только некоторые квантованные орбиты, расчет которых основан на целых числах: до сих пор в физике целые числа служили характеристикой процесса только при интерференции стоячих волн.

Но в применении к электрону, материальной частице, масса которого была уже измерена, представление о волне принималось весьма нерешительно. В 1927 году, в том самом году, когда молодой Оппенгеймер сдавал экзамены на степень доктора в Геттингене, двое его соотечественников – физики Дэвиссон и Джермер – показали, что пучок электронов, пропускаемый через очень тонкие пленки, подчиняется тем же законам дифракции, что и лучи света. А дифракция, хорошо известное из оптики явление, мыслима только в применении к пучкам волн.

Для волновой механики модель Резерфорда-Бора явилась лишь некоторым приближением, дающим более или менее верное изображение первичной идеи об атоме, связанное с привычной трактовкой результатов точных экспериментов. Действительность же оказывается гораздо сложнее. Ядро атома не похоже на Солнце, а электроны и того менее похожи на планеты. Квантовые числа обозначают не орбиты, а уровни и субуровни энергии. Волновая механика в отличие от классической механики не определяет заранее положения электрона в заданный момент. Более того, она доказывает, что такое предсказание невозможно; можно рассчитать только вероятность присутствия электрона в определенный момент в некоторой конкретной части пространства, окружающего ядро. Эта вероятность пропорциональна интенсивности волны в данной области пространства.

Во всех случаях, когда речь идет об измерениях отдельно взятой частицы, большинство предсказаний волновой механики выражается не конкретно, а в виде вероятностей. Это относится, в частности, к предсказаниям положения и энергии частицы в любой будущий момент времени. Введение понятия вероятности привело к большому смятению умов и по существу означало отказ науки от того, что до сих пор считалось ее незыблемым принципом – от причинности явлений в природе. Правильнее было бы сказать, что здесь речь идет о причинности нового типа: результаты расчетов вероятности не являются ни менее строгими, ни менее точными, чем данные вычислений на основе классической механики. Но они более сложны и содержат математические параметры, физический смысл которых трудно себе представить, пользуясь нашим опытом чувственного восприятия мира.

На основе принципов волновой механики Гейзенберг дал математическую формулировку соотношения неопределенностей: некоторые параметры отдельных частиц связаны между собой таким образом, что их можно одновременно измерить только до определенной степени точности. Чем больше увеличивают точность измерения одного параметра, тем больше автоматически возрастает неопределенность другого параметра. Таким образом, чем более точно определяется положение электрона, тем меньше оказывается данных о его количестве движения (т.е. о его энергии), а чем лучше производится измерение количества движения электрона, тем менее точно можно установить его положение. При этом речь идет не о несовершенстве методов эксперимента, а о неизбежном следствии квантовой теории, установленном логическим путем.

«Есть много странного в том, что касается тождественности электронов и их опознаваемости, – отмечает Оппенгеймер. – Все они похожи друг на друга. Присущие им свойства, их заряд, их масса в состоянии покоя – одни и те же. Эту штуку хотелось бы представить себе более ясно, и когда-нибудь это, безусловно, удастся. Если бы классическая физика властвовала безраздельно, то можно было бы всегда опознать определенный электрон, тот самый, который уже наблюдался. Тогда можно было бы, хотя и не без труда, проследить за электроном, начиная с того места, где он находился вначале, не терять из виду его траекторию во время столкновений, взаимодействий, отклонений и его собственных изменений. И если при этом он бы столкнулся со вторым электроном, то можно было бы установить, по какому направлению будет перемещаться первый электрон, а по какому – второй. В действительности дело обстоит совершенно иначе, за исключением некоторых частных случаев, когда столкновения происходят при таких малых энергиях, что частицы могут быть описаны волнами, которые никогда не накладываются друг на друга в одном и том же направлении в один и тот же момент времени. За исключением этих условий, нет возможности различить электроны, тем более что в атомной физике электроны одного и того же атома и даже соседних атомов не имеют точно определенного положения и часто могут занимать один и тот же объем».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


М. Рузе читать все книги автора по порядку

М. Рузе - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Роберт Оппенгеймер и атомная бомба отзывы


Отзывы читателей о книге Роберт Оппенгеймер и атомная бомба, автор: М. Рузе. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x