Ричард Докинз - Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной
- Название:Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной
- Автор:
- Жанр:
- Издательство:АСТ : CORPUS
- Год:2015
- Город:Москва
- ISBN:978-5-17-086374-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Докинз - Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной краткое содержание
Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Высказывалось увлекательное предположение, что дельфинам, если бы они только захотели, ничего бы не стоило передавать друг другу “мысленные образы”. Все, что им было бы нужно, — это имитировать с помощью своего голоса, которым они владеют виртуозно, эхо, приходящее от тех или иных предметов. Так они могли бы обмениваться своим субъективным восприятием этих предметов. Это восхитительное предположение, увы, не доказано. Теоретически на такое могли бы быть способны и рукокрылые, но гипотеза насчет дельфинов выглядит правдоподобнее, поскольку в целом они более общительны. Также они, возможно, и более “умны”, но не уверен, что это имеет отношение к делу. Аппаратура, необходимая для обмена полученными с помощью эха картинками, не сложнее тех приборов, которые необходимы для эхолокации как таковой и которыми как летучие мыши, так и дельфины уже располагают. И плавный, постепенный переход между использованием голоса для того, чтобы производить эхо и чтобы имитировать его, вполне может существовать.
Итак, как минимум две группы рукокрылых, две группы птиц, зубатые киты и, в меньшей степени, возможно, еще несколько представителей млекопитающих — все они самостоятельно пришли к технологии сонара. И это только за некоторый промежуток времени в пределах последних 100 млн лет. У нас нет возможности узнать, не возникала ли эта же технология независимо еще у каких-либо животных, ныне вымерших. Может быть, у птеродактилей?
До сей поры ни насекомые, ни рыбы, использующие сонар, не были обнаружены [4] Не так давно эхолокация была доказана у ночных бабочек совок (Лапшин, Воронцов, 1998). — Прим. науч. ред.
, однако две совершенно различные группы рыб — одни в Южной Америке, а другие в Африке — выработали у себя похожую навигационную систему (судя по всему, не менее сложно устроенную), которую можно считать аналогичным, хотя и иным решением той же проблемы. Это так называемые слабоэлектрические рыбы. “Слабоэлектрические” — это те, что в отличие от сильноэлектрических рыб используют свое электрическое поле для навигации, а не затем, чтобы оглушать добычу. Кстати говоря, этот способ охоты тоже возникал несколько раз независимо в неродственных друг другу группах рыб. Например, у электрических “угрей” (которые на самом деле не угри, но приобрели форму тела как у угрей благодаря конвергенции) и у электрических скатов.
Южноамериканские и африканские слабоэлектрические рыбы приходятся друг другу довольно дальними родственниками, однако и те и другие живут, каждые на своем континенте, в очень похожей воде — слишком мутной, чтобы зрение было эффективным. Применяемый ими физический принцип — электрическое поле в воде — даже еще более чужд нашему пониманию, чем тот, который используют летучие мыши и дельфины. У нас по крайней мере есть субъективное представление о том, что такое эхо, а вот каково это — чувствовать электрическое поле, мы практически не понимаем. Мы вообще узнали о существовании электричества всего пару столетий назад. Будучи людьми, мы субъективно не в состоянии разделить ощущения электрической рыбы, но мы можем понять ее как физики.
Нам нетрудно увидеть на своей обеденной тарелке, что мускулы рыбы расположены с каждой стороны ее тела в виде ряда сегментов — батареи мышечных единиц. У большинства рыб они последовательно сокращаются, заставляя тело извиваться и тем самым проталкивая его вперед. А у электрических рыб — как слабо-, так и сильноэлектрических — они стали батареей в электротехническом смысле. Каждый сегмент (“элемент”) этой батареи создает разность потенциалов. Эти элементы установлены вдоль тела рыбы таким образом, что у сильноэлектрической рыбы, например у электрического угря, вся батарея в целом производит ни много ни мало 1 ампер при напряжении 650 вольт. Человек, которого ударит током электрический угорь, вполне может потерять сознание. Но слабоэлектрическим рыбам, использующим электричество исключительно с целью сбора информации, большие значения силы тока и напряжения не нужны.
Электрорецепция, как назвали это явление, неплохо понятна нам на уровне физики, но, конечно, не на уровне того, на что это похоже — быть электрической рыбой. Следующее описание в равной степени подходит и к африканским, и к южноамериканским слабоэлектрическим рыбам — так велика конвергенция. Из передней части рыбы ток выходит в воду в виде кривых линий, которые загибаются назад и заканчиваются в области хвоста. На самом деле это не разрозненные “линии”, а непрерывное “поле”, невидимый электрический кокон, окружающий рыбу. Однако нам, людям, нагляднее будет представить его в виде совокупности кривых, которые выходят из рыбы через отверстия, расположенные в ряд на передней половине ее тела, а затем огибают ее и снова проникают внутрь через отверстия на кончике хвоста. У каждой такой “амбразуры” имеется нечто подобное миниатюрному вольтметру, контролирующему уровень напряжения. Если рыба парит в толще воды и вокруг нет никаких преград, то эти кривые гладкие. Каждый крохотный вольтметр регистрирует напряжение в соответствующем ему отверстии как “нормальное”. Но, как только поблизости появится какой-либо посторонний предмет, скажем камень или что-нибудь съедобное, линии тока, наткнувшиеся на этот предмет, изменят свою конфигурацию. Это повлияет на разность потенциалов в соответствующих отверстиях, и изменение будет зафиксировано соответствующими вольтметрами. Таким образом, теоретически компьютер, сопоставляя показания всех вольтметров, мог бы рассчитать расположение неоднородностей в окружающей воде. Именно это и делает мозг рыбы. Опять-таки это не обязательно означает, что рыбы сильны в математике. У них есть аппарат, который решает необходимые уравнения, точно так же как наш мозг бессознательно решает уравнения всякий раз, когда мы ловим мяч.
Крайне важно, чтобы тело нашей рыбы все время оставалось полностью выпрямленным. Если оно будет изгибаться, как у обычных рыб, то возникнут дополнительные искажения, учитывать которые находящемуся в голове “компьютеру” проблематично. Электрические рыбы как минимум дважды независимо обнаружили эту хитроумную методику навигации, однако за нее пришлось заплатить: они были вынуждены отказаться от обычного для рыб — и очень эффективного — способа передвижения, когда все тело волнообразно извивается. Им всегда приходится держаться вытянутыми по струнке, но зато у них есть сплошной длинный плавник, идущий вдоль тела. Таким образом, волнообразно извивается не вся рыба, а только этот плавник. Перемещение в воде происходит довольно медленно, однако все-таки происходит, и судя по всему, жертва себя оправдывает: потери в скорости явно компенсируются способностью ориентироваться в пространстве. Восхитительнее всего то, что южноамериканские и африканские электрические рыбы пришли почти к одинаковому решению, но все же не вполне. Кое-какое несоответствие их разоблачает. Цельный длинный плавник, идущий вдоль всего тела, возник как у тех, так и у других, однако у африканских рыб он расположен на спине, а у южноамериканских — на брюхе. Как мы уже видели, такие различия в мелочах очень типичны для конвергентной эволюции. Разумеется, и конвергентным разработкам разумных инженеров они тоже очень свойственны.
Читать дальшеИнтервал:
Закладка: