Валерий Демин - Тайны Вселенной
- Название:Тайны Вселенной
- Автор:
- Жанр:
- Издательство:Вече
- Год:1999
- Город:М.
- ISBN:5-7838-0204-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Валерий Демин - Тайны Вселенной краткое содержание
В книге на основе новейших научных данных воссоздается картина мироздания в ее развитии — от первых мифопоэтических представлений до современной космологической панорамы. Автор обращается к загадкам устроения наиболее трудных и острых проблем астрономии, астрологии, астрофизики, паранормальных явлений, космических контактов.
* * *Только текст. В самой книге 140 иллюстраций.
Тайны Вселенной - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Математика — тоже тайна. Но тайна особого рода. Характерная черта абстрактного мышления (как и художественного) — свободное манипулирование понятиями, сцепление их в конструкции любой степени сложности. Но ведь от игры мысли и воображения реальный Космос не меняется. Он существует и развивается по собственным объективным законам. Формула — и на «входе» и на «выходе» — не может дать больше, чем заключено в составляющих ее понятиях. Сами эти понятия находятся между собой в достаточно свободных и совершенно абстрактных отношениях, призванных отображать конкретные закономерности материального мира. Уже в силу этого никаких абсолютных формул, описывающих все неисчерпаемое богатство Природы и Космоса, не было и быть не может. Любая из формул — кем бы она ни была выведена и предложена — отражает и описывает строго определенные аспекты и грани бесконечного Мира и присущие ему совершенно конкретные связи и отношения.
Например, в современной космологии исключительное значение приобрело понятие пространственной кривизны, которая якобы присуща объективной Вселенной. На первый взгляд понятие кривизны кажется тайной за семью печатями, загадочной и парадоксальной. Человеку даже с развитым математическим воображением нелегко наглядно представить, что такое кривизна. Однако не требуется ни гениального воображения, ни особого напряжения ума для уяснения того самоочевидного факта, что кривизна не представляет собой субстратно-атрибутивной характеристики материального мира, а является результатом определенного отношения пространственных геометрических величин, причем — не просто двухчленного, а сложного и многоступенчатого отношения, одним из исходных элементов которого выступает понятие бесконечно малой величины.
Великий немецкий математик Ф. Гаусс, который ввел в научный оборот понятие меры кривизны, относил ее не к кривой поверхности вообще, а к точке на поверхности и определял как результат (частное) деления (то есть отношения) «полной кривизны элемента поверхности, прилежащего к точке, на самую площадь этого элемента». Мера кривизны означает, следовательно, «отношение бесконечно малых площадей на шаре и на кривой поверхности, взаимно друг другу соответствующих». В результате подобного отношения возникает понятие положительной, отрицательной или нулевой кривизны, служащее основанием для различных типов геометрий и в конечном счете — основой для разработки соответствующих моделей Вселенной.
Естественно-научное обоснование и философское осмысление таких моделей являются одной из актуальных проблем современной науки, при решении которых с достаточной полнотой проявляется методологическая функция философских принципов русского космизма. Без их привлечения и системного использования невозможно правильно ответить на многие животрепещущие вопросы науки.
Что такое, например, многомерные пространства и неевклидовы геометрии? Какая реальность им соответствует? Почему вообще возможны пространства различных типов и многих измерений? Да потому, естественно, что возможны различные пространственные отношения между материальными вещами и процессами. Эти конкретные и многоэлементные отношения, их различные связи и переплетения получают отображение в понятиях пространств соответствующего числа измерений. Определенная система отношений реализуется, как было показано выше, и в понятии кривизны. Как Евклидова, так и различные типы неевклидовых геометрий допускают построение моделей с любым числом измерений; другими словами, количество таких моделей неограниченно.
В этом смысле и вопрос: «В каком пространстве мы живем — Евклидовом или неевклидовом?» — вообще говоря, некорректен. Мы живем в мире космического всеединства (в том числе и пространственно-временного). А в каком соотношении выразить объективно-реальную протяженность материальных вещей и процессов и какой степени сложности окажется переплетение таких отношений (то есть в понятии пространства какого типа и скольких измерений отобразятся в конечном счете конкретные отношения), — во-первых, диктуется потребностями практики, а, во-вторых, не является запретительным для целостной и неисчерпаемой Вселенной. Поэтому пространство, в котором мы живем, является и Евклидовым, и неевклидовым, ибо может быть с одинаковым успехом и равноправием описано на языках геометрий и Евклида, и Лобачевского, и Гаусса, и Римана, и в понятиях любой другой геометрии, — уже известной или же которую еще предстоит разработать науке грядущего. Ни двух-, ни трех-, ни четырехмерность, ни какая-либо другая многомерность не тождественны реальной пространственной протяженности, а отображают лишь строго определенные аспекты объективных отношений, в которых она может находиться. Искать же субстратно-атрибутивный аналог для евклидовости или неевклидовости и экстраполировать его на Вселенную — примерно то же самое, что искать отношения родства на лицах людей, отношения собственности — на товарах или недвижимости, а денежные отношения — на монетах или бумажных купюрах.
Таким образом, понятие кривизны не поддается наглядному представлению и является обыкновенной абстракцией, которая отображает некоторую совокупность необычным образом переплетенных пространственных (и временных) отношений. В зависимости от того, каким именно образом соединены в мысли реальные пространственные отношения, получается то или иное многомерное или неевклидово пространство (количество таких многомерных пространств ничем не ограничено). Материальный же мир один-единственен. То, что Космос единственен, — всегда было ясно философам всех без исключения направлений, начиная с Платона и кончая Герценом, сформулировавшим свое кредо в «Письмах об изучении природы» в афористически четкой форме:
«Наука одна, двух наук нет, как нет двух вселенных».
Бесспорный же факт, что единственная Вселенная допускает при своем описании различные и даже взаимоисключающие друг друга модели, как раз и доказывает: каждая такая модель имеет право на существование только потому, что отражает строго определенный аспект и набор конкретных отношений, присущих бесконечному и неисчерпаемому Космосу.
Но, быть может, в определенных случаях кривизна все же может выступать чем-то вещественным? Ведь не секрет, что по страницам научной и популярной литературы гуляют, к примеру, такие ее истолкования: она, дескать, может существовать самостоятельно, отрываться от своего носителя, разламываться на кусочки, свободно перемещаться в космическом пространстве. Подобное представление является попросту абсолютизированным овеществлением абстрактно-математических отношений. Никому ведь не придет в голову искать отношения родства (мать, отец, сын, дочь, брат, сестра и т. п.) в виде неких самостоятельных и вещественных сущностей. Точно так же не найти отношений собственности на полках магазинов или на дачных участках, а производственных отношений — на руках, лицах, в глазах рабочих, крестьян, чиновников, бизнесменов, интеллигенции и т. д. А вот отношение кривизны пытаются выявить в субстанциально-вещественной форме, в «чистом виде», так сказать, — в межгалактических далях и на космическом «дне».
Читать дальшеИнтервал:
Закладка: