Эксперт Эксперт - Эксперт № 40 (2013)
- Название:Эксперт № 40 (2013)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эксперт Эксперт - Эксперт № 40 (2013) краткое содержание
Эксперт № 40 (2013) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
— Вы именно о литий- ионных батарейках говорите?
— Я начал заниматься полиацетиленом, который мог бы использоваться в литий-ионных батареях в качестве катодного материала. Было это где-то в 1981 году.
— Почему в истории с литий- ионными батареями этот углеродистый полимер оказывается так важен?
— Полиацетилен представляет собой электрический проводящий полимер, его свойства были изучены профессором Хидэки Сиракавой, который получил за это открытие Нобелевскую премию по химии в 2000 году. Связь здесь такая. Как вы знаете, существуют так называемые первичные — одноразовые — батареи и вторичные, перезаряжаемые, то есть аккумуляторные батареи. Аккумуляторные очевидно удобнее одноразовых. Известны аккумуляторные батареи с водным электролитом — никель-кадмиевые и никель-магниевые батарейки, популярные на рынке еще лет десять-пятнадцать назад и сейчас часто еще применяемые в различных переносных электромеханических устройствах, таких как шуруповерты, где требуется большой ток разряда. Так вот они как раз из таких батарей — с водным электролитом. Но проблема «водных» аккумуляторов заключается в том, что напряжения выше 1,5 вольта они выдать не в состоянии, так как при более высоком напряжении там начинаются электролизные процессы. Это означает, что ни снизить серьезно вес батареи, ни повысить плотность накопленной в ней энергии нельзя. Батареи же с неводными электролитами способны давать напряжение 3 вольта и более, а значит, при той же плотности накопленной энергии могут быть в разы более легкими и в одной ячейке питания хранить столько же энергии, сколько в нескольких водных аккумуляторах, что и требовалось для получающей все большее распространение портативной техники. В начале 1970-х быстро нашли место на рынке первичные элементы, незаряжаемые «батарейки» — легкие и с довольно большой удельной энергией батареи с безводным электролитом и с литиевым анодом, позволившие резко повысить как рабочее напряжение батареи, так и ее удельную энергию. Так появились одноразовые литиевые батареи, известные на рынке и сегодня.
— А разработка аккумуляторов на безводной основе застопорилась?
— Если разработка первичных элементов с литиевым анодом увенчалась сравнительно быстрым успехом и такие элементы прочно заняли свое место как источники питания портативной техники, то создание безводных литий-ионных аккумуляторов натолкнулось на принципиальные трудности — на их преодоление потребовалось более двадцати лет. На создание такой батареи у меня лично ушло в итоге почти пятнадцать лет.
Как я уже говорил, я начал заниматься полиацетиленом, который мог использоваться в таких батареях в качестве катодного материала, примерно в 1981 году. Тогда стало ясно, что этот углеродистый материал оказался весьма удобной матрицей для интеркаляции, вкрапления, ионов лития (при разряде такого аккумулятора происходит деинтеркаляция ионов лития из углеродного материала, а во время зарядки — интеркаляция, ионы как бы заполняют ячейки углеродистого материала. — « Эксперт»). Но скоро я понял, что, хотя полиацетиленовая ячейка вполне функциональна, ее низкая реальная плотность ограничивает доступный энергетический потенциал батареи, к тому же химическая стабильность материала оказалась ограниченной. Поэтому для применения в качестве отрицательного электрода я изучил пригодность нескольких других углеродистых материалов. И обнаружил, что некоторые из них, с определенной кристаллической структурой нанометровой величины — углеродные волокна, выращенные из паровой фазы моими коллегами Оберлином, Эндо и Коямой за несколько лет до этого, могут обеспечивать большую мощность батареи в целом.
Акира Йосино уверен, что беспроводная передача электроэнергии станет следующим технологическим прорывом
Фото: Александр Крупнов
— Когда вы почувствовали, что находитесь на пороге успеха?
— Приемлемую аккумуляторную батарею я изготовил уже в 1985 году, когда понял, из какого материала нужно делать анодную часть литий-ионной батареи. На этот раз мне помогла в этом работа американского ученого из Техасского университета Джона Гуденофа. Еще в 1980-м он опубликовал в журнале Material Research Bulletin статью, в которой описал свойства LiCoO sub 2 /sub в качестве возможного анодного материала для вторичной батареи. А ученые Ядзами и Тузаин провели первые удачные эксперименты по интеркаляции ионов лития из литированных оксидов кобальта в углеродный материал.
Так появилась сначала идея, а потом и сама новая система неводной вторичной батареи, работающей с помощью переходных металлов литированных оксидов кобальта, содержащих ионы лития, в качестве положительного электрода и углеродистых материалов в качестве отрицательного электрода. По сути это был уже настоящий литий-ионный аккумулятор с безводным электролитом, с существенным по сравнению с водными аккумуляторами улучшением плотности энергии, что позволило значительно снизить размер и вес самого аккумулятора. Кроме того, такие батареи использовали в своей работе не химическое превращение, что означало стабильные характеристики работы самого аккумулятора, сохраняющиеся в течение длительного срока службы, в том числе высокую долговечность цикла с небольшим уровнем деградации накапливаемой энергии. Главное — в этой системе не происходит перемещения самого металлического лития, не происходит никаких химических реакций, а процессы разряда и заряда сводятся лишь к переносу ионов лития с одного электрода на другой. Это было важно: некоторые работы с безводными литиевыми аккумуляторами приводили к их самовозгоранию в результате замыкания.
— Оставалось новое изделие продать.
— Что вы, до этого еще было далеко. Но это был тот этап, когда все говорили, насколько востребованы портативные приборы, что необходимо уменьшать размеры аккумуляторов. Мне почему-то вспоминается, что чуть ли не основным стимулом для развития новых батарей в конце 1980-х была необходимость в подобных батареях для переносных восьмимиллиметровых видеокамер. Но кому нужны самовозгорающиеся батарейки? В 1986 году мы испытали наши батарейки на взрывоопасность, сбрасывая на них тяжелые металлические блоки. Они выдержали испытание. Это был переломный момент для начала коммерциализации литий-ионных батарей, потому что их ждали. После необходимых доработок в 1991 году по нашему заказу Sony выпустила первые коммерческие ЛИБ, а годом позже это сделало совместное предприятие Asahi Kasei и Toshiba. СП потом разорилось, и выяснилось, что для Asahi Kasei выгоднее продавать лицензии на выпуск таких батарей другим компаниям, поставляя им для дальнейшей сборки материалы собственного производства фактически для всех частей устройства. И если в 1992 году мы представили продукт еще как разработку, неопробованную инновацию, то в 1995-м, через три года прилизывания всех технологий, мы представили ЛИБ уже в качестве массового продукта. Плотность накапливаемой в ЛИБ энергии вдвое превышала показатели никель-кадмиевых или металлогидридных аккумуляторов, при этом она была вдвое легче и занимала намного меньше места. Это способствовало значительному сокращению размера и веса всего источника питания для портативных устройств.
Читать дальшеИнтервал:
Закладка: