Сборник статей - Чего не знает современная наука
- Название:Чего не знает современная наука
- Автор:
- Жанр:
- Издательство:Литагент «Новый Акрополь»a1511911-a66d-11e1-aac2-5924aae99221
- Год:2015
- Город:Москва
- ISBN:978-5-91896-102-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сборник статей - Чего не знает современная наука краткое содержание
Жизнь без тайны – пресна и скучна. Присутствие тайны – вызов для нас, а стремление проникнуть в нее – сильнейший стимул наших действий. Представьте себе, что мы знаем ВСЁ, – как же это неинтересно! Знание наперед всего, что должно произойти, напоминает чтение интересной книги с конца; тайна тем и интересна, что ее можно раскрывать. Нам повезло: мы живем в огромном мире, который до конца никогда не поймем… Авторы статей, собранных в этой книге, познакомят вас с теми тайнами, что с нетерпением сегодня ждут своих открывателей; а также из этих статей вы узнаете о древних, но, быть может весьма полезных методах познания мира, в котором мы живем.
Статьи эти на протяжении более чем 10 лет публиковались в журналах «Новый Акрополь» и «Человек без границ» и неизменно вызывали огромный читательский интерес. Авторы статей – ученые, преподаватели естественных наук и философы, имеющие большой практический опыт.
Чего не знает современная наука - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В своей книге «Тайна мира» (Mysterium Cosmographicum) , которая вышла в свет в 1596 г. Иоганн Кеплер предположил, что существует связь между пятью платоновыми телами и шестью открытыми к тому времени планетами Солнечной системы. Согласно этому предположению, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера. В нее, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера. Расхождение между моделью Кеплера и реальными размерами орбит (порядка нескольких процентов) И. Кеплер объяснял «влиянием материи».
В XX веке платоновы тела были использованы в теории electron shell model Роберта Муна, которая также известна как «теория Муна». Мун заметил, что геометрическое расположение протонов и нейтронов в атомном ядре связано с положением вершин вложенных платоновых тел. Эта концепция была вдохновлена работой И. Кеплера «Mysterium Cosmographicum».
Существует формула Эйлера для многогранников:
F + V = E + 2
В этой формуле F – число граней, V – число вершин, E – число ребер. Эти числовые характеристики для платоновых тел приведены в таблице.

Количественные особенности платоновых тел
Важные соотношения между ребрами, диаметрами вписанных и описанных сфер, площадями и объемами правильных многогранников выражаются через иррациональные числа. В таблице ниже представлено отношение длины ребра к диаметру описанной сферы для каждого из пяти платоновых тел.
Каждый полученный результат есть иррациональное число, которое можно найти только через извлечение квадратного корня. Мы видим, что здесь фигурируют числа, которые являются важными и особенными в сакральной математике.
Геометрия додекаэдра и икосаэдра связана с золотой пропорцией. Действительно, гранями додекаэдра являются пентагоны, т. е. правильные пятиугольники, основанные на золотой пропорции. Если внимательно посмотреть на икосаэдр, то можно увидеть, что в каждой вершине икосаэдра сходится пять треугольников, внешние стороны которых образуют пентагон. Уже этих фактов достаточно, чтобы убедиться в том, что золотая пропорция играет существенную роль в конструкции этих двух платоновых тел. Эти две фигуры являются обратными друг другу: обе состоят из 30 ребер, но, несмотря на это, икосаэдр имеет 20 граней и 12 вершин, а додекаэдр – 12 граней и 20 вершин. Также обратными друг другу являются октаэдр и гексаэдр, и театраэдр сам к себе.
Существуют удивительные геометрические связи между всеми правильными многогранниками . Так, например, куб и октаэдр дуальны, т. е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны икосаэдр и додекаэдр. Тетраэдр дуален сам себе. Додекаэдр получается из куба построением «крыш» на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру, то есть из куба могут быть получены все остальные правильные многогранники.
Роберт Лолор в своей работе показывает, что платоновы тела можно построить исходя из икосаэдра. Он пишет: «Если мы соединим все внутренние вершины икосаэдра, нарисовав три линии из каждой из них, соединяющих каждую вершину с ей противолежащей, и затем из двух верхних вершин проведем четыре линии к двум противоположным, так чтобы эти линии сошлись в центре, мы, действуя в соответствии со сказанным, естественным образом построим ребра додекаэдра. Такое построение происходит автоматически при пересечении внутренних линий икосаэдра. После создания додекаэдра мы можем, просто используя шесть из его вершин и центр, построить куб. Используя диагонали куба, мы можем построить звездообразный или переплетенный тетраэдр. Пересечения звездообразного тетраэдра с кубом дают нам точное местоположение для построения вписанного октаэдра. Затем в самом октаэдре с использованием внутренних линий икосаэдра и вершин октаэдра получается второй икосаэдр. Мы прошли через весь полный цикл, пять этапов от семени к семени. И такие действия представляют собой бесконечную последовательность.

Тетраэдр
Простейшим среди правильных многогранников является тетраэдр. У Платона он соответствует стихии Огня. В физике «огонь» можно соотнести с состоянием плазмы. Тетраэдр имеет наименьшее число граней среди Платоновых тел и является трехмерным аналогом плоского правильного треугольника, который имеет наименьшее число сторон среди правильных многоугольников. Его четыре грани – равносторонние треугольники. Четыре – это наименьшее число граней, отделяющих часть трехмерного пространства. Каждая его вершина является вершиной трех треугольников. Все многогранные углы тетраэдра равны между собой. Сумма плоских углов при каждой вершине равна 180°. Таким образом, тетраэдр имеет 4 грани, 4 вершины и 6 ребер.
Октаэдр
Октаэдр составлен из восьми равносторонних треугольников. У Платона он соответствует стихии Воздуха. В физике «воздух» можно соотнести с газообразным состоянием вещества. Каждая его вершина является вершиной четырех треугольников. Противоположные грани лежат в параллельных плоскостях. Сумма плоских углов при каждой вершине равна 240°. Таким образом, октаэдр имеет 8 граней, 6 вершин и 12 ребер.
Икосаэдр
Икосаэдр – одно из пяти платоновых тел, по простоте следующее за тетраэдром и октаэдром. У Платона он соответствует стихии Воды. В физике «воду» можно соотнести с жидким состоянием вещества. Икосаэдр составлен из двадцати равносторонних треугольников. Каждая его вершина является вершиной пяти треугольников. Сумма плоских углов при каждой вершине равна 300°. Таким образом, икосаэдр имеет 20 граней, 12 вершин и 30 ребер.
Гексаэдр
Гексаэдр или куб составлен из шести квадратов. У Платона он соответствует стихии Земли. В физике «землю» можно соотнести с твёрдым состоянием вещества. Каждая его вершина является вершиной трех квадратов. Сумма плоских углов при каждой вершине равна 270°. Таким образом, куб имеет 6 граней, 8 вершин и 12 ребер.
Додекаэдр
Додекаэдр составлен из двенадцати равносторонних пятиугольников. У Платона он соответствует пятому элементу – Эфиру. Каждая его вершина является вершиной трех пятиугольников. Сумма плоских углов при каждой вершине равна 324°. Таким образом, додекаэдр имеет 12 граней, 20 вершин и 30 ребер.
Читать дальшеИнтервал:
Закладка: