А Матущенко - Ядерный щит
- Название:Ядерный щит
- Автор:
- Жанр:
- Издательство:Array Литагент «Логос»
- Год:2008
- Город:Москва
- ISBN:978-5-98704-272-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
А Матущенко - Ядерный щит краткое содержание
Для историков науки, ученых и специалистов оборонных отраслей. Может использоваться в учебном процессе при подготовке кадров в области ядерной энергетики и оборонной промышленности. Представляет интерес для широкого круга читателей.
Ядерный щит - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Оба института успешно работают и в области создания боеприпасов для комплексов ПВО и ПРО. Специалисты институтов создают не только зарядную часть, но и автоматику, приборы, взрыватели, обеспечивающие оптимальный подрыв изделия. Это позволяет значительно повысить эффективность заряда, уменьшить его массу и габариты.
Основа оружейных разработок – расчетно-теоретический и газодинамический комплексы. Работая над ядерным оружием, центры создали программы для моделирования сложных газодинамических процессов различного характера. Это дает возможность вести целенаправленную оптимизацию проектируемых боеприпасов расчетными методами, используя эксперимент на заключительном этапе.
Математическое моделирование и ЭВМ
Разработка ядерного оружия оказала колоссальное влияние на развитие отечественной прикладной математики и вычислительной техники. Уже в самом начале работ в КБ-11 Ю. Б. Харитон не только привлек к расчетам самых известных математиков страны, но и создал на объекте собственный сильный математический отдел, который превратился во всемирно известный центр прикладной математики. Первые образцы отечественных ЭВМ поступили в КБ-11 в 1955 г. Специалисты ВНИИЭФ получили такие технические характеристики, которые удивляли даже самих разработчиков ЭВМ. Становление и развитие математического отделения проходило под руководством академика Н.Н. Боголюбова, профессора И.Д. Софронова.
В математическом отделении ВНИИЭФ были выполнены первые в нашей стране работы по созданию неоднородного вычислительного комплекса ЭВМ и распараллеливанию счета больших задач.
Прямые контакты между математиками института и математиками американских ядерных центров убедительно демонстрируют высокий уровень работ наших специалистов по математическому моделированию сложных физических процессов и культуру математического моделирования.
До 1948 г. математические работы по ядерной тематике выполнялись в известных математических коллективах страны: отделе прикладной математики (ОПМ) МИАН СССР (позже – ИПМ), по заданиям специалистов КБ-11 работала группа под руководством академика М.В. Келдыша, в Ленинградском оптико-механическом институте (ЛОМИ) АН СССР – под руководством Л.В. Канторовича, в Институте физических проблем – под руководством академика Л.Д. Ландау.
Первая математическая расчетная группа была образована в КБ-11 в 1948 г., в 1950 г. она преобразована в отдел, в 1952 г. – в сектор.
Когда разрабатывались первые образцы атомного оружия, электронных вычислительных машин в стране не было. Необходимые расчеты выполнялись на механических и электромеханических настольных машинах. Впервые расчеты на ЭВМ для обоснования работы двухстадийного термоядерного заряда РДС-37 были сделаны в 1954—1955 гг.
За 50 с лишним лет мощность вычислительного парка ВНИИЭФ возросла в 10 000 раз.
Физика взрыва и высоких давлений
Исследования свойств веществ ядерных зарядов на газодинамической стадии, когда диапазон давлений достигает сотен миллионов атмосфер, показали, что нужна разработка принципиально новых методов исследований, кинетика которых требовала высокой точности – до сотых долей микросекунды. Появилась необходимость в новых методах регистрации высокоскоростных процессов. В КБ-11 были заложены основы отечественной высокоскоростной фотохронографии со скоростью развертки до 10 км/с и скоростью съемки порядка 1 млн кадров в секунду. Сверхскоростной регистратор, разработанный А.Д. Захаренковым, Г.Д. Соколовым и В.К. Боболевым (1948), стал прототипом серийных приборов.
Исследования веществ в условиях динамического сжатия привели к созданию во ВНИИЭФ всемирно известной школы физики высоких импульсных давлений (Я.Б. Зельдович, К.И. Щёлкин, В.К. Боболев, Л.В. Альтшулер, С.Б. Кормер, А.Г. Иванов, Л.М. Тимонин, С.А. Новиков, Р.Ф. Трунин).
Важное значение имеет разработка во ВНИИЭФ не имеющего аналога в России рентгенографического комплекса с просвечиванием в нескольких направлениях на основе импульсных циклических и линейных ускорителей электронов.
Физика горячей плазмы
В 1963 г. после предварительных исследований возможности использования лазеров для целей поражения военной техники, а также появления в 1964 г. идеи инерциального лазерного термоядерного синтеза (Н.Г. Басов, О.Н. Крохин) началось бурное развитие лазерной тематики во ВНИИЭФ. Появились принципиально новые предложения у группы Н.Г. Басова (ФИАН) – принцип фотодиссоциации для создания инверсной населенности, и у группы С.Б. Кормера (ВНИИЭФ) – накачка лазера светом фронта ударной волны. Первый такой лазер был запущен в начале 1966 г.
Разработка во ВНИИЭФ лазерных установок с мощностью излучения в десятки и сотни тераватт началась с 1973 г. по инициативе С.Б. Кормера, Г.А. Кириллова и при энергичной поддержке Ю.Б. Харитона. В результате такие установки («Искра-4» и «Искра-5») были созданы во ВНИИЭФ. В опытах была получена рекордно горячая плазма с температурой ионной компоненты около 12 кэВ. Нейтронный выход достигал значений 10 10ОБ-нейтронов за импульс.
Стратегическая оборонная инициатива США в начале 1980-х годов породила во ВНИИЭФ ряд интересных проектов на стыке фундаментальных и прикладных наук.
Ядерно-физические исследования
Для конструирования ядерных зарядов прежде всего требовалось определение ядерно-физических констант основных делящихся материалов и критических масс. От точного значения критических параметров зависела безопасность производства самих делящихся материалов, мощность ядерного оружия. Поэтому весной 1948 г. в КБ-11 появился научно-исследовательский сектор, в котором впервые была создана нейтронно-физическая лаборатория.
Персонально отвечал за экспериментальное определение величины критической массы ядерной взрывчатки Ю.Б. Харитон. Реализация программы ядерных экспериментов потребовала создания во ВНИИЭФ уникальной (и не только в масштабах СССР) экспериментальной базы, состоявшей из парка крупных физических установок и позволявшей не только проводить профильные исследования, но и решать задачи фундаментальной науки.
В 1953—1954 гг. КБ-11 предписывалось выполнить теоретические работы по таким фундаментальным направлениям, как теория деления тяжелых ядер, квантовая теория поля, изобарные состояния нуклонов.
Большой цикл работ по определению ядерно-физических констант и критическим сборкам был проведен на созданном во ВНИИЭФ в 1949 г. под руководством Г.Н. Флёрова, Д.В. Ширкова, Ю.А. Зысина и А.А. Малинкина физическом котле на быстрых нейтронах (ФКБН). В конце 1960-х годов во ВНИИ экспериментальной физики начинают развиваться пионерские работы по разработке апериодических быстрых реакторов (А.М. Воинов, В.Ф. Колесов, М.И. Кувшинов, А.А. Малинкин, Б.Д. Сциборский). На базе этих исследований был создан парк импульсных реакторов с уникальными характеристиками (БИГР, ГИР, ВИР, БР-1).
Читать дальшеИнтервал:
Закладка: