Комиссия по борьбе с фальсификацией научных - В защиту науки (Бюллетень 1)

Тут можно читать онлайн Комиссия по борьбе с фальсификацией научных - В защиту науки (Бюллетень 1) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая документальная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Комиссия по борьбе с фальсификацией научных - В защиту науки (Бюллетень 1) краткое содержание

В защиту науки (Бюллетень 1) - описание и краткое содержание, автор Комиссия по борьбе с фальсификацией научных, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Сборник содержит статьи, рецензии и обращения в Правительство РФ и средства массовой информации, подготовленные в ходе работы Комиссии по борьбе с лженаукой и фальсификацией научных исследований РАН. Эти материалы направлены на разоблачение псевдонаучной и антинаучной деятельности; они обосновывают необходимость сохранения и развития подлинной науки в нашей стране.

В защиту науки (Бюллетень 1) - читать онлайн бесплатно полную версию (весь текст целиком)

В защиту науки (Бюллетень 1) - читать книгу онлайн бесплатно, автор Комиссия по борьбе с фальсификацией научных
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

"Хаос — это свободная игра факторов, каждый из которых, взятый сам по себе, может показаться второстепенным, незначительным. В уравнениях математической физики такие факторы учитываются в форме нелинейных членов, т. е. таких, которые имеют степень, отличную от первой" (с. 43).

Это попытка объяснить, почему хаотические решения возникают в нелинейных уравнениях. Попытка, более всего напоминающая объяснение происхождения слова смородина из слова Родина (на самом деле, оно родственно слову смердеть и означало "пахучая ягода"). Не знаешь даже, с чего начать перечислять нелепости в этом пассаже. Динамический хаос, который имеет здесь в виду Лесков, — это не "свободная игра факторов", а удивительное, но реальное свойство отдельных систем быть неустойчивыми по отношению к малым возмущениям, но при этом оставаться в некоторой ограниченной области параметров. В результате, предсказание движения системы оказывается возможным только на ограниченное время вперед. При этом система остается принципиально детерминистской. Малые возмущения как причину непредсказуемости доктор путает здесь с нелинейностью как причиной чувствительности системы к этим возмущениям. Между тем чувствительность к малым возмущениям и хаотические решения существуют и у линейных систем.

Простейший пример нелинейности — растяжение пружинки. Если к пружинке подвесить небольшой груз, ее растяжение будет пропорционально весу груза. Эта пропорциональность и другие подобные ей и называются «линейностью». По мере увеличения груза мы дойдем до предела растяжимости пружины; сначала она перестанет удлиняться, а потом и вовсе порвется. Это — нелинейная стадия. Более сложный пример нелинейности дают волны на воде. Когда возвышение поверхности невелико, вдвое более высокая волна ведет себя совершенно так же, как и вдвое более низкая. Это — линейность. По мере увеличения амплитуды (возвышения) волны ее гребень начинает заостряться, а затем волна опрокидывается. Это уже нелинейный эффект.

Большинство процессов в природе нелинейны. Но в большинстве же случаев при малой интенсивности процесса он хорошо описывается линейным приближением, как в случае пружинки и волн. Линейные уравнения, грубо говоря, все одинаковы, и мы знаем, как находить их решения. Нелинейные же уравнения все разные, и решению поддаются только в редких случаях. По-этому ученые долгое время исследовали почти исключительно линейные уравнения. В нелинейной области доступнее для изучения случай слабой нелинейности: натянутая, но еще не рвущаяся пружина, заостраяющиеся, но еще не опрокидывающиеся волны. С математической точки зрения это и значит, что к линейным уравнениям добавляются малые дополнительные члены, о которых говорит Лесков. Но они никакого отношения не имеют ни к "свободной игре второстепенных факторов", ни даже к хаосу.

Хаос возникает в физических системах, когда решение системы особо чувствительно к малым возмущениям, но при этом остается в ограниченной области. При этом система остается строго детерминистской, т. е., если абсолютно точно знать ее начальное состояние, то можно абсолютно точно предсказать ее будущее. Тонкость, однако, в том, что абсолютной точности не бывает, а ошибка в измерении (или приготовлении) начального состояния приводит к растущей со временем ошибке предсказания. Но у нехаотических систем эта ошибка растет линейно со временем, так что увеличение точности вдвое позволяет предсказать будущее на вдвое больший срок. У хаотических же систем ошибка предсказания растет со временем экспоненциально, в геометрической прогрессии. В результате, каждое увеличение начальной точности вдвое увеличивает срок предсказания всего на сколько-то времени.

Представьте, что для увеличения надежности прогноза погоды на один день надо было бы удвоить количество метеостанций (чтобы получить более подробные данные). Тогда увеличение еще на один день потребовало бы вчетверо больше станций, на десять дней — в тысячу раз, а на двадцать дней — в миллион с лишком. Ясно, что тогда прогноза на двадцать дней нам не видать, как своих ушей, хотя теоретически он возможен. Так динамический хаос разрешает противоречие между детерминизмом и невозможностью знать будущее.

Совсем нетрудно продемонстрировать, как такое поведение возникает. Представим себе лист теста 20 см в диаметре, поместим на него две черные перчинки и измерим расстояние между ними с точностью до 0,1 мм. Затем раскатаем лист вдвое, сложим пополам, снова раскатаем вдвое и сложим пополам, и так далее. (Это называется преобразование пекаря.) Сможем ли мы предсказать, какое будет расстояние между перчинками после десяти раскатываний? После первого расстояние увеличится вдвое, но и ошибка измерения увеличится вдвое. После каждого раскатывания наша начальная ошибка будет удваиваться, в то время как расстояние между перчинками никогда не превысит 20 см. Через 10 раскатываний ошибка возрастет в тысячу раз (точнее, в 1024 раза), т. е. достигнет 10 см. Это будет означать, что мы уже ничего не знаем о расстоянии между перчинками. Вполне возможно, что пример Лескова со складыванием листа бумаги восходит к преобразованию пекаря, фундаментально непонятому и до неузнаваемости перевранному.

Ну и, наконец, надо отметить, что хаотическое поведение наблюдается отнюдь не только у нелинейных, но и у вполне линейных систем, в том числе таких вполне классических, как точечная частица в потенциальном поле (так называемые хаотические бильярды). Хаотична и система твердых упругих шариков в сосуде, т. е. идеальный газ классической физики. Неужели Лесков не знает и этого?

"Принятие [эволюционной синергетической] парадигмы означает, во-первых, отказ от базовых постулатов традиционной науки:

— от принципа классической причинности,

— от редукционизма,

— от гипотезы апостериорности, т. е. приобретения знаний исключительно на основе прошлого опыта" (с. 45).

Ни редукционизм, ни классическая причинность нигде в тексте не объясняются, так что остается неясным, чем грозит отказ от них. Что же касается "гипотезы апостериорности", то альтернативой ей, очевидно, служит приобретение знаний на основе будущего опыта. Сомневаетесь? Напрасно: "… будущее оказывает влияние на текущий процесс — этот вывод полностью противоречит классике". Едва ли студенты-философы, политологи и религиоведы, которым адресована книжка, так легко поверят во влияние будущего на прошлое, даже если их убеждает в этом доктор физ. — мат. наук. Но не обязанные знать, что такое тензор, метрика или спин, они не смогут понять, что их водят за нос в таких местах, как: "Основная категория относительности — это метрика, т. е. число, которое сопоставляется с двумя точками (событиями)" (с. 51). Неверно, метрика — это не число, а тензор.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Комиссия по борьбе с фальсификацией научных читать все книги автора по порядку

Комиссия по борьбе с фальсификацией научных - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




В защиту науки (Бюллетень 1) отзывы


Отзывы читателей о книге В защиту науки (Бюллетень 1), автор: Комиссия по борьбе с фальсификацией научных. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x