Вокруг Света - Журнал «Вокруг Света» №6 за 2002 год

Тут можно читать онлайн Вокруг Света - Журнал «Вокруг Света» №6 за 2002 год - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая документальная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
 Вокруг Света - Журнал «Вокруг Света» №6 за 2002 год

Вокруг Света - Журнал «Вокруг Света» №6 за 2002 год краткое содержание

Журнал «Вокруг Света» №6 за 2002 год - описание и краткое содержание, автор Вокруг Света, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Журнал «Вокруг Света» №6 за 2002 год - читать онлайн бесплатно полную версию (весь текст целиком)

Журнал «Вокруг Света» №6 за 2002 год - читать книгу онлайн бесплатно, автор Вокруг Света
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Непростая репутация нейтрино навела некоторых ученых на мысль, что возможны взаимные превращения нейтрино (так называемые осцилляции) за время их путешествия от центра Солнца к Земле. Еще в 1957 году физик Бруно Понтекорво сформулировал теорию нейтринных преобразований, согласно которой при существовании различных видов нейтрино они могут трансформироваться из одного вида в другой и обратно. Но для такого превращения необходимо, чтобы нейтрино имело хотя бы крошечную массу. Безмассовые частицы не способны на такие превращения. Следовательно, обнаружение осцилляций нейтрино будет свидетельством наличия у них массы покоя. А потому последующие нейтринные эксперименты ставили своей основной целью поиск осцилляций нейтрино.

В 1998 году участники эксперимента «Суперкамиоканде» заявили о регистрации явлений, похожих на нейтринные осцилляции. В ходе эксперимента исследовалось число мюонных нейтрино, рожденных в верхних слоях земной атмосферы, при столкновении протонов космических лучей с ядрами атомов воздуха, приходящих в детектор с разных расстояний. Оказалось, что меньшее число мюонных нейтрино приходило с тех направлений, где нейтрино преодолевали большее расстояние. Эти результаты дали основания полагать, что количество нейтрино данного класса зависит от пройденного ими пути, что может быть следствием трансформации нейтрино из одного вида в другой.

Решение проблемы дефицита солнечных нейтрино, и в частности исследование нейтринных осцилляций, также требует независимых измерений потока электронных нейтрино и мюонных и тау-нейтрино. Такие исследования были выполнены Садбурской нейтринной обсерваторией (SNO). Благодаря использованию тяжелой воды были измерены поток и энергия электронных нейтрино и поток всех нейтрино с использованием двух типов взаимодействий нейтрино с дейтерием. Потоки нейтрино, измеренные двумя способами, различались на треть, и причину этого расхождения ученые видят в том, что электронные нейтрино, возникающие в центре Солнца по пути к Земле, преобразовались частично в мюонные, а частично в тау-нейтрино. Такие преобразования свидетельствуют о наличии у нейтрино массы покоя. Оказалось, что все нейтрино Вселенной весят примерно столько же, сколько все видимые звезды.

Сверхновые данные

В отличие от Солнца вспышки сверхновых звезд создают потоки не только нейтрино (причем с энергиями, гораздо большими, чем солнечные), но и антинейтрино. Одно из таких событий произошло 23 февраля 1987 года, когда с помощью проектов Кamiokande-II и IMB (США) была зафиксирована нейтринная вспышка, вызванная взрывом сверхновой звезды в Большом Магеллановом Облаке. Это были первые обнаруженные нейтрино от известного источника в другой галактике. За 13 секунд Кamiokande-II было зарегистрировано 11 нейтринных и антинейтринных событий, хотя обычно в день регистрируется только несколько частиц. Несмотря на то что число обнаруженных нейтрино было мало, тот интервал времени, за который они наблюдались, хорошо согласовывался с предсказаниями стандартной теории.

При взрыве сверхновой большая часть энергии уносится в виде нейтрино, остаток в основном уходит на расширение оболочки, и только крошечная доля высвободившейся гравитационной энергии покидает место катастрофы в виде оптической вспышки. То есть световой выход вспышки сверхновой является буквально поверхностным явлением.

Задачи нейтринной астрономии высоких энергий сводятся в основном к поиску точечных источников излучения. Они не наблюдаются непосредственно, но их существование вытекает из свойств космических лучей, состоящих главным образом из протонов. Имея электрический заряд, протоны отклоняются магнитными полями и потому не могут нести информацию о направлении источника. Однако любой источник, ускоряющий фотоны до высоких энергий, создает большой поток пи-мезонов, которые, распадаясь, испускают гамма-лучи и нейтрино. Последние сохраняют направление на источник, и, таким образом, существование основного потока высокоэнергетичных протонов подразумевает существование потоков высокоэнергичных нейтрино. Источниками нейтрино высоких энергий могут быть двойные системы, содержащие нейтронную звезду или черную дыру, сверхновые звезды и их молодые остатки, активные ядра галактик и гамма-барстеры.

Достигая Земли, мюонные нейтрино и антинейтрино в воде на большой глубине создают поток мюонов, которые при больших энергиях сохраняют направление генерирующих их нейтрино. Траектория мюонов высокой энергии выглядит в воде как светящийся жгут. Происходит это потому, что мюон на своем пути порождает ядерно-электромагнитные ливни, которые испускают в воде Черенковское излучение. Поэтому глубоководный нейтринный телескоп представляет собой просто пространственную решетку из фотоумножителей, регистрирующих свет от траектории мюонов. Длина пробегов мюонов высоких энергий в воде очень велика, что позволяет довольно точно определить направление на источник. Поэтому для создания огромных мюонных детекторов, которые могли бы зафиксировать высокоэнергетичные нейтрино, используют воды Мирового океана и глубоководные озера.

Результаты многолетних исследований показали, что Байкал – одно из наиболее подходящих мест на Земле для размещения глубоководных детекторов Черенковского излучения, и сейчас на Байкальской нейтринной станции уже несколько лет работает нейтринный телескоп NT-200. Установке его модулей предшествовала длительная работа по изучению свойств озера и созданию глубоководной аппаратуры. Зимой 1992 года на глубине 1 370 метров, на расстоянии около 4 км от берега был установлен несущий каркас телескопа, а в 1998 году Байкальский нейтринный телескоп стал одной из крупнейших в мире установок для исследования нейтрино высоких энергий.

Другим уникальным нейтринным телескопом является Антарктическая Мюонная и Нейтринная Детекторная сетка (AMANDA) – совместный проект США, Швеции, Германии. Еще один нейтринный телескоп – ANTARES – устанавливается в 40 км на юго-восток от Марселя в Средиземном море на глубине 2,4 км. Он будет обнаруживать следы нейтрино, которые приходят из наиболее бурных мест во Вселенной.

AMANDA и ANTARES помогут расшифровать тайны гамма-всплесков, которые идентифицируются как возможные источники самых высокоэнергетических космических лучей и займут важное место в многосторонней атаке на природу частиц темной материи, а также откроют возможность для изучения нейтринных осцилляций. Они помогут узнать, существуют ли во Вселенной скрытые ускорители, из которых вылетают только нейтрино.

Эксперимент Homestake

Детектор Homestake представляет собой большой контейнер объемом 380 000 л, заполненный 610 т жидкого перхлорэтилена. Этот контейнер помещен на глубину 1 480 м и дополнительно защищен толстым слоем воды. Такая защита позволяет исключить нежелательные побочные ядерные реакции. К сожалению, такой детектор не мог обнаруживать низкоэнергетичные нейтрино, так как они не способны превратить изотоп хлора в аргон и, следовательно, они не будут зарегистрированы данным телескопом. Под действием нейтрино с энергиями, большими, чем 0,86 МэВ, ядро хлора превращается в ядро радиоактивного аргона, возникавший аргон извлекался с помощью продувания через бак с 20 000 л газообразного гелия. Затем аргон вымораживался охлаждением до температуры 77 К и адсорбировался активированным углем. После этого атомы аргона регистрировались по их радиоактивному распаду с помощью пропорциональных счетчиков.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Вокруг Света читать все книги автора по порядку

Вокруг Света - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Журнал «Вокруг Света» №6 за 2002 год отзывы


Отзывы читателей о книге Журнал «Вокруг Света» №6 за 2002 год, автор: Вокруг Света. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x