Генри Смит - Атомная энергия для военных целей

Тут можно читать онлайн Генри Смит - Атомная энергия для военных целей - бесплатно ознакомительный отрывок. Жанр: Прочая документальная литература, издательство Государственное транспортное железнодорожное издательство, год 1946. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Генри Смит - Атомная энергия для военных целей

Генри Смит - Атомная энергия для военных целей краткое содержание

Атомная энергия для военных целей - описание и краткое содержание, автор Генри Смит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Официальный отчёт о разработке атомной бомбы под наблюдением правительства США.


The Official Report on the Development of the Atomic Bomb Under the Auspices of the United States Government.

Атомная энергия для военных целей - читать онлайн бесплатно ознакомительный отрывок

Атомная энергия для военных целей - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Генри Смит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.13. Массовое число. Не только положительный заряд ядра всегда выражается целым числом, равным числу электронных зарядов, но и масса ядра всегда приближенно равна целому кратному основной единицы массы, почти равной массе протона ядра атома водорода (см. Приложение 2). Это целое число называют массовым числом А; оно всегда по меньшей мере вдвое больше атомного номера; исключение составляет водород и редкий изотоп гелия. Так как масса протона примерно в 1800 раз больше массы электрона, то масса ядра почти равна массе всего атома.

1.14. Изотопы и изобары. Атомы, имеющие один и тот же атомный номер, но разные массовые числа, называются изотопами. Химически они тождественны, будучи лишь разновидностями одного и того же химического элемента. Атомы, имеющие одинаковые массовые числа, но разные атомные номера, называются изобарами и представляют собою различные химические элементы.

РАДИОАКТИВНОСТЬ И ЯДЕРНЫЕ ПРЕВРАЩЕНИЯ

1.15. Если атом испускает α -частицу (которая имеет атомный номер два и массовое число четыре), то он становится атомом уже другого элемента, атомный номер которого меньше на две, а массовое число на четыре единицы. При испускании ядром β -частицы атомный номер на единицу возрастает, а массовое число остается неизменным. В некоторых случаях эти изменения сопровождаются испусканием γ -лучей. Элементы, которые самопроизвольно изменяются или «распадаются» указанным образом неустойчивы и их принято называть «радиоактивными». Это свойство испускать α - или β -частицы обнаруживают только те естественные элементы (за редкими исключениями), которые имеют очень большие атомные номера и массовые числа, например, уран, торий, радий и актиний, т. е. элементы с самым сложным строением ядер.

ПЕРИОД ПОЛУРАСПАДА; РАДИОАКТИВНЫЕ ЯДРА

1.16. Все атомы данного радиоактивного изотопа обладают одинаковой вероятностью распада в заданный промежуток времени, так что достаточно большой образец радиоактивного вещества, содержащий многие миллионы атомов, всегда превращается или «распадается» с одной и той же скоростью. Эта скорость, с которой вещество меняется или «распадается», выражается через «период полураспада» время, необходимое для распада половины всего первоначального количества атомов; это время, очевидно, постоянно для каждой данной разновидности атомов. Периоды полураспада (или просто периоды) радиоактивных веществ лежат в интервале от долей секунды для самых неустойчивых из них до миллиардов лет для тех веществ, которые лишь слегка неустойчивы. Часто «дочернее» ядро, подобно своему радиоактивному «родителю», само является радиоактивным и распадается и т. д., пока через несколько последующих поколений ядер не образуется устойчивое ядро. Существуют три такие семейства или ряда, включающие в общей сложности около сорока разных радиоактивных веществ (рис. 1). Ряд радия начинается с одного изотопа урана, ряд актиния с другого изотопа урана и ряд тория начинается с тория. Конечными продуктами каждого ряда, образующимися после десяти или двенадцати последовательных испусканий α - и β -частиц, являются устойчивые изотопы свинца.

ПЕРВЫЕ ОПЫТЫ ИСКУССТВЕННОГО РАСЩЕПЛЕНИЯ ЯДРА

1.17. До 1919 года никому не удавалось нарушить устойчивость обычных ядер или повлиять на скорости распада радиоактивных ядер. В 1919 г. Резерфорд показал, что α -частицы, обладающие большой энергией, способны вызвать изменения в ядре обычного

Рис 1 Начальные участки трех естественных рядов и новые трансурановые - фото 1

Рис. 1. Начальные участки трех естественных рядов и новые трансурановые элементы нептуний и плутоний.

элемента. В частности, ему удалось превратить несколько атомов азота, бомбардируя их α -частицами, в атомы кислорода. Процесс можно представить в таком виде:

Это символическое равенство означает что ядро гелия с массовым числом 4 α - фото 2

Это символическое равенство означает, что ядро гелия с массовым числом 4 ( α -частица), сталкиваясь с ядром азота, имеющим массовое число 14, дает ядро кислорода с массовым числом 17 и ядро водорода с массовым числом 1. Ядро водорода, называемое Протоном , играет особенно важную роль, так как из всех ядер оно обладает наименьшей массой. Хотя в естественных радиоактивных процессах протоны не обнаруживаются, имеется много прямых указаний на то, что они могут быть выбиты из ядер.

НЕЙТРОН

1.18. В течение десятилетия, последовавшего за работами Резерфорда, было произведено много аналогичных экспериментов с подобными же результатами. Один ряд экспериментов этого типа привел к открытию нейтрона частицы, свойства которой будут рассмотрены подробнее, так как именно она является основой в осуществлении всего проекта.

1.19. В 1930 г. В. Боте и Г. Беккер в Германии нашли, что когда очень быстрые естественные α -частицы из полония попадали на легкие элементы бериллий, бор и литий, то последние испускали излучение необычайно большой проникающей способности. Сперва это излучение было принято за γ -излучение, хотя оно было более проникающим, чем все известные γ -лучи, и объяснить с этой точки зрения детали результатов опыта было весьма трудно. Следующий важный шаг был сделан в 1932 г. в Париже Ирен Кюри и Ф. Жолио. Они показали, что если это неизвестное излучение попадает на парафин или на какое-нибудь другое соединение. содержащее водород, то это вещество выбрасывает протоны, обладающие очень большой энергией. Появление быстрых протонов само по себе не противоречило предположению, что новое излучение по своей природе состоит из γ -лучей, но эту гипотезу оказывалось все труднее и труднее примирить с детальным количественным анализом экспериментальных данных. Наконец (позднее, в 1932 г.), Дж. Чэдвик в Англии произвел ряд опытов, показавших, что гипотеза γ -лучей несостоятельна. Он предположил, что в действительности новое излучение состоит из незаряженных частиц, масса которых приблизительно равна массе протона, и это предположение подтвердил рядом опытов. Такие незаряженные частицы называются теперь нейтронами.

1.20. Одной из особенностей нейтронов, отличающих их от других субатомных частиц, является отсутствие у них заряда. Это свойство нейтронов, задержавшее их открытие, делает невозможным их непосредственное наблюдение и придает им большую проникающую способность. Благодаря отсутствию заряда нейтроны являются важными агентами в ядерных превращениях. Атом, разумеется, в своем нормальном состоянии также незаряжен, но он в десять тысяч раз больше нейтрона и состоит из сложной системы отрицательно заряженных электронов, расположенных на больших расстояниях вокруг положительно заряженного ядра. Заряженные частицы, например, протоны, электроны или α -частицы, и электромагнитные излучения (например, γ -лучи), проходя через вещество, теряют энергию. При этом возникают электрические взаимодействия, сопровождающиеся ионизацией атомов вещества. (Именно благодаря такому процессу ионизации воздух становится электропроводным на пути электрических искр или вспышек молнии). Энергия, затраченная на ионизацию, равна энергии, потерянной заряженными частицами, которые при этом замедляются, или γ -лучами, которые при этом поглощаются. Однако, такие силы действовать на нейтрон не могут; на него может оказывать влияние лишь сила очень близкого действия, т. е. сила, проявляющая себя только тогда, когда нейтрон подходит к атомному ядру на очень малое расстояние. Это те же силы, которые удерживают вместе составные части ядра, несмотря на силы взаимного отталкивания положительных зарядов внутри него.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Генри Смит читать все книги автора по порядку

Генри Смит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Атомная энергия для военных целей отзывы


Отзывы читателей о книге Атомная энергия для военных целей, автор: Генри Смит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x