Коллектив авторов - Новые технологии и материалы легкой промышленности: IX Международная научно-практическая конференция
- Название:Новые технологии и материалы легкой промышленности: IX Международная научно-практическая конференция
- Автор:
- Жанр:
- Издательство:Литагент БИБКОМ
- Год:2013
- Город:Казань
- ISBN:978-5-7882-1446-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Новые технологии и материалы легкой промышленности: IX Международная научно-практическая конференция краткое содержание
Новые технологии и материалы легкой промышленности: IX Международная научно-практическая конференция - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В наши дни значительно больший интерес представляют электрические разряды при атмосферном давлении между твердым и жидким электродами. Анализ литературы свидетельствует, что электрические разряды между струйным электролитическим катодом и твердым анодом практически не изучены. В этой связи проведены исследования на экспериментальной установке по изучению влияния электрического разряда на гидрофильность сверхмодульных полиэтиленовых волокон (производство Китай). Полученные данные свидетельствуют, что при режимах обработки: напряжение U=2 кВ, длительность обработки t=1с, объем электролита V=10 л, капиллярность волокон изменяется от 0 до 72 мм. Эти данные позволяют сделать заключение о перспективности модификации материалов при рассмотренном способе обработке в условиях атмосферного давления.
Литература
1. Перепелкин К.Е. Армирующие волокна и волокнистые полимерные композиты. – М.: НОТ, – 2009. – 380с.
2. Оулет Р., Барбье М., Черемиссинов П. и др. Технологическое применение низкотемпературной плазмы. Пер.с анг. – М.: Энергоатомиздат, – 1983. – 144с.
3. Шарнина Л.В., Телегина Ф.Ю. Текстильный материал как объект плазменной обработки. Гидрофилизация поверхности //Известия Вузов: Химия и химическая технология. – 2008. – Т.51. – Вып.3. – С.86-90.
4. Сергеева Е.А., Гришанова И.А., Абуталипова Л.Н., Илюшина С.В. Оптимизация режимов низкотемпературной плазменной обработки высокомодульных полиэтиленовых волокон //Весник Казанского государственного технологического университета. № 7. – Казань: КГТУ, 2010. – 94-98с.
5. Johansson K. Plasma modification of natural cellulosic fibres // Plasma technologies for textiles R. Shishoo. – CRS Press,2007. – C. 267.
6. Bradley J. W., Bryant P. M The diagnosis of plasmas used in the processing of textiles and other materials// Plasma technologies for textiles R. Shishoo. – CRS Press, – 2007. – C. 25.
ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ МОДИФИКАЦИИ НЕТКАНЫХ МАТЕРИАЛОВ ВЧ ПЛАЗМОЙ ПОНИЖЕННОГО ДАВЛЕНИЯ
УДК 677.3:533.9.01
Эффективным способом модификации различных материалов, в том числе кожи, меха и тканей, является обработка в неравновесной плазме высокочастотного емкостного (ВЧЕ) разряда пониженного давления [1]. Воздействие плазмы позволяет придавать изделиям из кожевенно-меховых материалов гидрофильные или гидрофобные свойства, улучшать физико-химические свойства, технологические и эксплуатационные характеристики. Широкий диапазон возможных видов модификации обеспечивается особенностями взаимодействия ВЧ плазмы пониженного давления с материалами.
Исследования плазменного воздействия на нетканые материалы на базе натуральных полимеров (обувные и технические картоны, войлоки) показали, что изменение их свойств не всегда может быть описано уже известными способами [2-3]. Это связано с тем, что структура нетканых материалов является более сложной, чем структура изученных ранее капиллярно-пористых объектов легкой промышленности, так как на многоуровневую структуру последних накладывается еще один структурный уровень – материала в целом.
Разработанная физическая модель позволила сформулировать научные положения об основном механизме плазменной модификации нетканых материалов на базе отходов кожевенно-мехового производства. Физическая модель заключается в следующем. Вследствие большей подвижности электронов по сравнению с ионами, образец нетканого материала, помещенный в ВЧ плазму пониженного давления, приобретает отрицательный заряд, а из-за колебаний электронного газа в окрестности образца возникает слой положительного заряда (СПЗ) толщиной 1,5-2 см. Ионы плазмы ускоряются в электрическом поле СПЗ до энергии 70-100 эВ и бомбардируют поверхность образца.
Нетканые материалы обладают развитой пористой и капиллярной структурой. Поэтому, в отличие от обработки материалов сплошной структуры электроны ионы плазмы проникают в них на значительную глубину. При этом электроны создают слои объемного отрицательного заряда, а ионы, передавая свою кинетическую энергию и энергию рекомбинации молекулам материала, модифицируют свойства поверхностных слоев образца.
Вследствие колебаний электронного газа, толщины СПЗ и, соответственно, потенциалы СПЗ с противоположных сторон образца осциллируют в противофазе друг с другом. На этот эффект накладываются колебания плотности объемного заряда, возникающие по следующей причине. Поток ионов на поверхность образца практически постоянен, поскольку тяжелые ионы не успевают реагировать на ВЧ колебания поля и дрейфуют в постоянном поле СПЗ. Электроны же попадают внутрь нетканого материала в течение лишь той части периода колебаний ВЧ электромагнитного поля, когда вектор напряженности электрического поля направлен от образца.
Колебания потенциалов СПЗ с противоположных сторон образца нетканого материала в совокупности с колебаниями объемного заряда являются причиной возникновения в объеме обрабатываемого высокочастотного электрического поля напряженностью ~10 5-10 6В/м. Натуральные биополимеры (кератин, коллаген и целлюлоза), являющиеся основными компонентами войлока или картонов, поляризуются в этом электрическом поле. Вследствие небольшой энергии ионизации полимеров и малой работы выхода электронов, во внутренних объемах между волокнами шерсти в войлоке, фрагментами кожи и крафт-целлюлозы в картонах, а также в макро-, микро- и нанопорах этих материалов возникают электрические разряды.
Заряженные частицы, появляющиеся в результате разрядов во внутренних промежутках нетканых материалов, рекомбинируют на внутренних поверхностях с выделением энергии рекомбинации от 12,1 до 20,2 эВ, в зависимости от вида ионов. Гашение кинетической энергии заряженных частиц в приповерхностных слоях нетканых материалов и выделение энергии рекомбинации на внешних и внутренних поверхностях приводят к разрыву слабых поперечных водородных связей и связей, образованных силами Ван-дер-Ваальса, конформации полимерных цепей, изменению упорядоченности как в макромолекулах коллагена и целлюлозы, так и в надмолекулярных структурах, и, как следствие, изменению физико-механических и эксплуатационных характеристик материала в целом.
Разработанные на базе физической модели научно-технологические основы получения нетканых материалов на основе отходов кожевенно-мехового производства, модифицированных неравновесной низкотемпературной плазмой, позволяют прогнозировать эксплуатационные и физико-химические свойства материала независимо от структуры и классов компонентов, входящих в состав нетканого материала, а также обосновывают режимы плазменной модификации, позволяющие достигать заданных параметров свойств нетканого материала.
Читать дальшеИнтервал:
Закладка: