Владимир Катасонов - О границах науки
- Название:О границах науки
- Автор:
- Жанр:
- Издательство:Литагент Познание ЦЕНТР УЧЕБНОЙ И НАУЧНО-ПРОСВЕТИТЕЛЬСКОЙ ЛИТЕРАТУРЫ – ПОЗНАНИЕ Литагент Познание
- Год:2017
- Город:Москва
- ISBN:978-5-906960-06-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Катасонов - О границах науки краткое содержание
О границах науки - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
4. Дискретность как научно-методологический и метафизический принцип
Лейбницевские метафизические обоснования новой математики и физики недолго занимают собственно ученых. Идеал ученого-энциклопедиста, знающего и занимающегося всем или почти всем, постепенно, по мере развития науки становится недостижимым. Заниматься опытной наукой и одновременно обсуждать философские, а тем более богословские основания этой науки становится все труднее. Наконец, с середины XIX века О. Конт вообще объявляет эти проблемы ненаучными. Кроме того, разрастающееся здание математики и ее успешное применение к естествознанию и технике как бы несли оправдание этих новых методов в самих себе. Однако наиболее глубокие и принципиальные ученые никогда не оставляли надежды получить какое-то обоснование той метафизике геометров, которая была связана с дифференциальным и интегральным исчислением.
С середины XIX века усилия сосредотачиваются на проблеме арифметизации континуума. Несмотря ни на какие успехи математики и математического естествознания, невозможно уже было скрывать, что даже в геометрии мы, строго говоря, не любой отрезок можем измерить. Ведь уже греки открыли факт несоизмеримости. Нужна была строгая концепция действительного числа. В 1870-х годах такие концепции были предложены целым рядом математиков: Ш. Мере, К. Вейерштрассом, Г. Кантором, Р. Дедекиндом. Существенно, что все их конструкции использовали актуальную бесконечность. Кантор в своих исследованиях тригонометрических рядов подходит к идее общей теории множеств. В 1870-1880-х годах у него уже созрели основные понятия этой теории: понятия мощности множества, кардинальных и ординальных чисел. Он доказывает знаменитую теорему, носящую с тех пор его имя, о несчетности множества действительных чисел, строит свою арифметику бесконечных чисел [39] Подробнее см. в моей книге: Катасонов В. Н. Боровшийся с бесконечным…
. В геометрии главной проблемой для теории множеств является конструирование континуума. Кантор предлагает несколько таких конструкций, стремясь выделить в континууме то, что делает его собственно непрерывным. Встает вопрос о мощности множества точек континуума. Кантор делает предположение, что эта мощность есть следующая по величине после счетного множества («континуум-гипотеза»). Однако доказать это или опровергнуть ему не удается [40] Как известно, в XX веке усилиями К. Гёделя и П. Коэна было доказано, что континуум-гипотеза независима от аксиом теории множеств Цермело – Френкеля.
.
Однако претензии автора теории множеств идут гораздо дальше. Он не только перестраивает всю математику, ставя все на фундамент теории множеств, но мечтает аналогичным образом перестроить и все естествознание. Главным инструментом здесь должно было быть понятие n-кратно упорядоченного множества. Например, любую группу людей можно рассматривать как 3-кратно упорядоченное множество: по росту, по весу, по возрасту. В каждом из трех возможных упорядочений множество будет просто упорядоченным. В 1884 году в письме к С. Ковалевской Кантор пишет: «Существуют также типы дважды, трижды, n-кратно и даже ω-кратно etc. (причем речь идет не только о естествознании, но и об искусстве) упорядоченных множеств, благодаря которым, как кажется, на старые и новые вопросы арифметики и космологии может быть пролито много света. Все, что я называю порядковыми типами, имеет в той же степени арифметический, как и геометрический характер, последний именно в случае типов кратно упорядоченных множеств. В то время как декартовски – ньтоновско – лейбницевский метод применяется при условии ограничения феноменов природы, я уже многие годы держусь того мнения, что у нас все еще отсутствует соответствующее строго математическое вспомогательное средство, с помощью которого было бы возможно в определенной мере войти внутрь природных процессов с целью тщательного рассмотрения их не извне, а изнутри, чтобы потом дать их более точное, чем прежде, описание…» [41] Georg Cantor to Sophie Kowalevski. Dec. 7, 1884 // Danben J. W. Georg Cantor: His Mathematics and Philosophy of the Infinite. Harvard University Press. Cambrige. L. 1979. P. 310–311.
. Для применения теории множеств нужно представить материю состоящей из однородных элементов. Кантор называет их вслед за Лейбницем единицами, или монадами. Однако, в отличие от Лейбница, никакой духовной жизни у этих монад не предполагается. Из этих однородных монад – элементов Кантор хочет получить физические, химические, а, возможно, и биологические свойства веществ, применяя исключительно конструкции своей теории множеств. Например, в соответствии с физикой своего времени он рассматривает два типа материи: телесную и эфирную. «С этой точки зрения в качестве первого вопроса, до которого, однако, не додумались ни Лейбниц, ни более поздние ученые, возникает такой: какие мощности соответствуют этим двум материям в отношении их элементов, когда они рассматриваются как множества телесных, соответственно, эфирных монад? В этой связи я уже давно выдвинул гипотезу, что мощность телесной материи – это та, которую я называю в своих исследованиях первой, но что, напротив, мощность эфирной материи является второй» [42] О различных теоремах из теории точечных множеств. Сообщение второе. С. 168 // Кантор Г. Труды по теории множеств. Отв. ред. А. Н. Колмогоров, А. П. Юшкевич. М., 1985.
. Другими словами, мощность множества телесных монад есть, по Кантору, Х 0 – мощность счетного множества, а мощность множества эфирных монад – Х рпервое следующее за Х 0кардинальное число. Это предположение необходимо Кантору для реализации его чисто формального подхода к физике с помощью теории множеств. Претензии Кантора титаничны: он хочет осуществить тотальную аналитическую деструкцию всего: континуум пространства, материя, природа и человек, картины и симфонии – все должно быть рассыпано в «песок» бескачественных элементов теории множеств. И обратно, всякая качественная определенность должна быть сведена к количественной в терминах канторовской бесконечной арифметики. Полезно еще раз подчеркнуть, что канторовские элементы ничего общего с лейбницевскими монадами не имеют. Элементы теории множеств – это абстрактные сущности. Тем самым Кантор пытался сложить конкретное из абстрактного, вычислить, так сказать, все сущее на листке бумаги… Дух этой титанической задачи все время витает над страницами канторовских сочинений, однако окончательного воплощения эти замыслы так и не получили…
Даже внутри математики (и логики) теория множеств столкнулась с серьезными препятствиями. Континуум-гипотеза не была доказана. В лице аксиомы-выбора выступило еще одно утверждение, которое нельзя было ни доказать, ни опровергнуть в рамках теории множеств стандартного типа. Эта аксиома была необходима для доказательства многих важных положений математического анализа. Замена ее на другую приводила к построению довольно экзотических математик. Обнаружилось, что отнюдь не любые множества можно рассматривать в теории множеств («парадокс Рассела»). Все это заставило гораздо строже относиться к построениям с бесконечными множествами, чем это мыслилось в «наивной теории множеств» времен Кантора, и вводить здесь соответствующие ограничения. Тем не менее все здание математики было в XX веке поставлено на фундамент теории множеств. Каждая теория была интерпретирована как некоторая структура на бескачественном множестве. Систематически это было проделано группой французских математиков, которые под псевдонимом «Н. Бурбаки» начали с 40-х годов издание серии книг «Трактат по математике», с единой точки зрения представляющих все главные направления этой науки. И первым томом этой серии была как раз книга, посвященная теории множеств. Теория множеств стала в XX веке основным языком математики. Как сказал, обсуждая апории теории множеств, один из крупнейших математиков XX века Д. Гильберт: «Никто не может изгнать нас из рая, который создал нам Кантор» [43] О бесконечном. С. 350 // Тшъберт Д. Основания геометрии. М.; Л., 1948.
.
Интервал:
Закладка: