Томас Дэвенпорт - Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности

Тут можно читать онлайн Томас Дэвенпорт - Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности - бесплатно ознакомительный отрывок. Жанр: org-behavior, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    9785961441055
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Томас Дэвенпорт - Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности краткое содержание

Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности - описание и краткое содержание, автор Томас Дэвенпорт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Ажиотаж вокруг искусственного интеллекта и его применения в классическом бизнесе не утихает, но многие компании до сих пор не понимают, какую реальную выгоду принесет им внедрение новых технологий в их бизнес-процессы.
Эксперт в области аналитики и больших данных, преподаватель в Гарвардской школе бизнеса Томас Дэвенпорт в своей книге покажет, как можно эффективно интегрировать ИИ и когнитивные технологии в текущую бизнес-стратегию предприятия, чтобы сделать продукты привлекательнее, процессы совершеннее, а компанию успешнее.
Он подробно рассматривает преимущества и сложности внедрения различных видов технологий: статистическое машинное обучение, нейронные сети, глубокое обучение, обработку естественного языка, экспертные системы на основе правил, роботов и роботизированную автоматизацию процессов. И приводит примеры как успешного, так и неудачного использования ИИ в разных компаниях: Amazon, Google, Facebook, GlaxoSmithKline, Uber, GE, цифровом банке DBS и др.

Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности - читать онлайн бесплатно ознакомительный отрывок

Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Томас Дэвенпорт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

DBS хотел получить систему, которая могла бы переваривать различные вводные данные – исследовательские отчеты, новости компании, индикаторы настроений на рынке и существующий портфель клиента, а затем давать рекомендации банковским менеджерам по работе с клиентами и самим клиентам. Но директор по информационным технологиям DBS Дэвид Гледхилл отметил, что технология не готова решить столь серьезную проблему:

Мы начали очень рано, и в то время технология Watson еще не достигла зрелости. Она не была готова стать новейшим разносторонним консультантом по благосостоянию, как планировали и DBS, и IBM. Приступив к реализации этого проекта, мы опередили время. Оглядываясь назад, можно понять, что технология не была достаточно зрелой. Она не была подготовлена для многих из наших сценариев использования. Отчасти проблема заключалась в том, что программное обеспечение не могло понять множество диаграмм и графиков, которые должно было понимать. Кроме того, исследовательские отчеты банка были представлены в различных форматах, а это затрудняло анализ данных системой Watson без особого вмешательства человека. Таким образом, хотя мы и разработали пилотного робота-советника, он был вдвое менее эффективен и продуктивен, чем средний менеджер по работе с клиентами. Мы извлекли из этого урок и остановили проект на ранней стадии.

Гледхилл и его коллеги продолжают оценивать новые технологии, которые могут быть полезны для совершенствования интеллектуального робота-советника, но пока они ничего не нашли. Однако по-прежнему верят в ценность ИИ. Они сосредоточили внимание на важных, но несколько менее масштабных проблемах своего бизнеса, которые могут быть хотя бы частично решены с помощью когнитивных технологий.

Проекты ИИ, реализуемые DBS, охватывают широкий спектр областей, но большинство из них касается операционных процессов. Например, банк использует модели машинного обучения для прогнозирования необходимости пополнения банкоматов наличными. Если раньше наличные в банкомате заканчивались в среднем раз в три месяца, то теперь этот показатель составляет раз в 55 лет, а количество поездок для пополнения банкоматов сократилось более чем на 10 %.

В сфере кадров DBS прогнозирует отток своих продажников. На основе ряда факторов, выявленных моделями машинного обучения (включая время отпуска, количество больничных, а также скорость ответов на электронные письма), банк может с 85 %-ной вероятностью предсказывать, уволится ли кто-либо из сотрудников, за три месяца до увольнения.

Банк также использует ИИ, чтобы выявлять мошенничество в области торговли ценными бумагами, строить алгоритмические модели кредитования, управлять чат-ботами в службе поддержки клиентов, а также выполнять ряд других задач. Особенно большую роль ИИ играет в исключительно цифровом банке DBS в Индии, где работает на 90 % меньше сотрудников, чем в обычном банке. Во всем банке взаимодействия клиентов с ИИ на 15 % снижают количество звонков в службу поддержки.

Гледхилл прокомментировал изменение фокуса ИИ в DBS:

Первоначальный робот-советник был нашим самым амбициозным проектом. Он пошел не по плану, потому что мы хотели получить продукт, намного опережающий время. Однако мы извлекли уроки из этого первого проекта и не отступились от ИИ. Мы идем по пути наименьшего сопротивления, используя ИИ для оптимизации бизнес-процессов в банке, и добиваемся огромных успехов. По отдельности эти проекты не столь амбициозны, но в совокупности они трансформируют бизнес, поскольку способствуют снижению операционных расходов, повышению производительности труда сотрудников, уменьшению количества ошибок и увеличению скорости вывода продуктов на рынок. Главное для нас – не сократить численность персонала, а существенно улучшить обслуживание клиентов и перейти от транзакционного банкинга к консультативному. Мы стремимся увеличить доход и расширить бизнес, сохраняя при этом разумное соотношение расходов и доходов.

Наиболее активно искусственный интеллект (как в своих продуктах, так и во внутренних процессах) используют такие технологические компании, как Amazon.com. Эта быстрорастущая компания заявляет, что «инвестировала» в ИИ более 20 лет, то есть на протяжении почти всей своей истории [6] "Machine Learning at AWS" website, accessed February 11, 2018, https://aws.amazon.com/machine-learning/ . . ИИ и технологии машинного обучения лежат в основе успешных продуктов Amazon по распознаванию голоса Echo/Alexa. Кроме того, хорошо известно, что Amazon находит потенциально прорывное применение искусственному интеллекту и в своей бизнес-модели, в том числе организуя доставку с помощью дронов в рамках проекта Prime Air и полностью автоматизированное обслуживание в магазинах Amazon Go.

Эти проекты сталкиваются с серьезными техническими, поведенческими и нормативными проблемами и реализуются не в полном объеме. Тем не менее кажется вероятным, что Amazon хотя бы частично преуспеет в своем зондировании (недавно я посетил магазин Amazon Go в Сиэтле – автоматизированная система обслуживания работает достаточно хорошо, хотя в магазине еще есть несколько сотрудников). Немногим компаниям под силу тягаться с Amazon в этой сфере. Компания располагает целым рядом алгоритмов искусственного интеллекта (как с открытым исходным кодом, так и проприетарных), которые предлагает клиентам и использует сама в Amazon Web Services. Складывается впечатление, что никто точно не знает, сколько специалистов по данным работает в компании, но сейчас в Amazon открыто 505 вакансий соответствующей направленности. На сайте Amazon по подбору персонала можно найти 171 вакансию в области искусственного интеллекта. Оба числа намного больше количества сотрудников этой сферы в других компаниях, которым и не снились такие цифры [7] Glassdoor, Amazon.com "data scientist" openings, accessed February 11, 2018. . Если кто-то и может создать смелые, сложные и хорошо заметные когнитивные технологии для внутреннего и внешнего использования, похоже, это Amazon.

Однако в 2017 г. в своем письме акционерам Amazon.comДжефф Безос утверждал, что ИИ (в частности, машинное обучение) окажет на компанию значительное, но незаметное влияние:

Но многое из того, что мы делаем с машинным обучением, происходит не на виду. Машинное обучение определяет наши алгоритмы прогнозирования спроса, поискового ранжирования продуктов, рекомендаций по продуктам и предложениям, размещения товаров, обнаружения мошенничества, переводов и многого другого. Хотя это и не столь очевидно, машинное обучение в основном будет воздействовать на процессы именно таким образом – незаметно, но значительно улучшая основные операции [8] "Bezos Letter to Shareholders," CNBC, https://www.cnbc.com/2017/04/12/amazon-jeff-bezos-2017-shareholder-letter.html . .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Томас Дэвенпорт читать все книги автора по порядку

Томас Дэвенпорт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности отзывы


Отзывы читателей о книге Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности, автор: Томас Дэвенпорт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x