Юрий Почанин - Использование биоразлагаемых материалов
- Название:Использование биоразлагаемых материалов
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2020
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Почанин - Использование биоразлагаемых материалов краткое содержание
Использование биоразлагаемых материалов - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Механизм биоразложения различается в зависимости от типа полимера, микроорганизмов и условий окружающей среды. Выделяют три вида воздействия микроорганизмов на полимерные материалы:
– механическое;
– действие продуктов метаболизма (органических кислот, ферментов, аминокислот, пигментов) на основные физико-химические и технологические свойства материалов;
– биозагрязнение полимерных материалов и изделий из них.
Механическое разрушение полимеров происходит за счет разрастания мицелия гриба. Грибница плесени для своего роста может использовать очень тонкие трещины и поры материала, образующиеся на стыке пластмассы и частиц компонентов.
Биозагрязнение возникает за счет непосредственного присутствия спор, копидий или отдельных частей мицелия на различных изделиях. В процессе жизнедеятельности на полимерных материалах плесневые грибы и бактерии способны выделять огромное количество самых разнообразных метаболитов, которые негативно влияют на свойства материалов. Окислительное брожение, вызываемое плесневыми грибами и окислительными бактериями, возможно из-за того, что микроорганизмы выделяют особые окислительно-восстановительные ферменты. Действие продуктов метаболизма способствует прохождению в основном двух процессов, приводящих к биодеградации: гидролизу и окислению. На начальной стадии и вне живых организмов биоразложение происходит за счет гидролиза с уменьшением молекулярной массы. Гидролитическое разложение при рН <1,5 происходит незначительно, а при рН >7,5 – быстро. За биоразложение ответственны протеиназа, фицин, эстераза и трипеин. Реакции микробиологического превращения углеводородов являются в основном окислительными процессами. В результате их протекания образуются спирты, альдегиды, кето- и оксикислоты, подвергающиеся дальнейшему окислению и фрагментации. Ниже приведена схема механизма ферментативной деполимеризации поливинилового спирта:

При окислении β-углеродного атома алкановой цепи образуются спирты и кетоны. Разложение кетона приводит к образованию первичного спирта, длина цепи которого на два атома углерода короче, чем у исходного соединения. Этот спирт затем может подвергаться окислительной дегидрогенизации с последующим β-окислением образовавшейся жирной кислоты. Окисление непредельных углеводородов под действием энзимов, выделяемых микроорганизмами, идет через образование спиртов, альдегидов, кето- и оксикислот с дальнейшим превращением их в двухосновные кислоты, подвергающиеся затем β-окислению. Гидролитическое и ферментативное разложение полигидроксижирных кислот протекает по схеме:

Расщепление микроорганизмами ароматических углеводородов сопровождается образованием фенолов, которые далее окисляются в нейтральные двухосновные кислоты. Алкил замещенные ароматические соединения подвергаются бензильному окислению с помошью грибов Aspergillus niger, Aspergillus sclerotiorum, Penicillium adametri. Расщепление микроорганизмами целлюлозы приводит к образованию олиго- и моносахаридов, СО2, а полиимида – к разрушению имидного цикла. Установлено наличие в метаболитах грибов уксусной, пропионовой, масляной, фумаровой, янтарной, яблочной, лимонной, винной, глюконовой и щавелевой кислот. Органические кислоты играют двойную роль: с одной стороны, действуют на полимерные материалы как агрессивные среды, способные приводить к изменению их физико-механических характеристик, с другой – являются источником углерода для дальнейшего развития грибов. Полимеры поражаются следующими основными видами микроорганизмов: грибами – A. niger, A. versicolor, A. flavus, A. amstelodamii, A. ruber, Pen. purpurogenum, Pen. brevi-compactum, Pen. commune, Cladosporium, Fusarium, Paccllomyces, A. wamori, A. oryzae, Tricoderma и др.
Установлено, что оксид железа в составе композиционных полимерных материалов стимулирует рост микроорганизмов, диоксид титана – инертен, а оксид цинка замедляет его. Из наполнителей асбест и тальк увеличивают, а карбонат кальция уменьшает интенсивность роста микроорганизмов. Низкая грибостойкость ряда композиционных материалов связана с наличием в их составе оксида магния, обладающего гигроскопичностью, что приводит к набуханию, способствующему интенсивному развитию микроорганизмов.
Таким образом, для полного биоразложения полимерного материала необходимо наличие трех ключевых элементов: микроорганизмов, селективно действующих на полимерные материалы; самих полимерных материалов; соответствующих условий окружающей среды. Если отсутствует один из этих элементов, то биоразложения не происходит. Примером могут служить газеты или продукты питания, которые после длительного пребывания в земле или на свалках почти полностью сохранились. Полимер, подвергаемый разложению, должен удовлетворять определенным требованиям. Так, в частности, полимерная цепь должна содержать химические фрагменты, подвергаемые гидролизу или окислению. Наиболее устойчивыми считаются полимеры, которые содержат в звене мономера не более 10 атомов углерода. Дополнительное влияние имеет соотношение гидрофобности и гидрофильности. При этом возможно наслоение позитивных эффектов (например, если скорость гидролиза коррелирует с гидрофильностью материала). Устойчивость к действию микроорганизмов полимерных материалов зависит и от использованных пластификаторов, наполнителей, стабилизаторов, а также от того, в какой мере эти вещества могут являться для микроорганизмов источником углерода, азота и других биогенных элементов. Известно, что неорганические компоненты – силикаты, сульфаты, фосфаты, карбонаты – не поддерживают рост грибов. Показано, что грибостойкость ПВХ-образцов не означает их бактериостойкость. Так, например, сланцевый ПВХ – грибостоек, но разрушается динитрофицирующими и углеводородокисляющими бактериями. Сейчас нет абсолютно устойчивых к действию живых организмов полимерных материалов. Факторы окружающей среды должны быть подобраны так, чтобы создавать микроорганизмам оптимальные условия для биоразложения. Основным местом обитания микроорганизмов является почва. Их видовой состав и количество зависят от вида почвы, ее структуры, плодородия и других причин. Наиболее насыщен микроорганизмами слой почвы на глубине 5–15 см. Здесь 1 г почвы содержит до 108 единиц микроорганизмов. Как правило, чем больше содержится в почве органических остатков, тем больше в ней микроорганизмов. Метаболизм почвы зависит от системы взаимосвязей внутри сообщества микробов. При изучении микроорганизмов, выделенных из любой почвы, поражает их разнообразие и то, что они обладают часто противоположными и несовместимыми для одной среды обитания свойствами. Процесс разложения органических веществ в почве осуществляется путем последовательных реакций с участием различных групп микроорганизмов, сменяющих друг друга и поставляемых почвой из своего колоссального запаса – микробного пула. Микроорганизмами-космополитами всех типов почв являются грибы родов Penicillium, Aspergillus и бактерии Bacillus mycoides, Bacillus megaterium. Их объединяет одно общее свойство – способность выделять ферменты. Без ферментов в природе не создается и не разрушается ни одно вещество. Любое расщепление мертвого органического субстрата – ферментативный процесс, в результате которого высвобождаются простые химические соединения, в дальнейшем утилизирующиеся как самими микроорганизмами, так и высшими растениями. Успешное решение проблемы во многом связано с развитием представлений о природе реального процесса микробиологического повреждения материалов и с наличием объективной количественной информации о закономерностях возникновения и протекания этого процесса. Поэтому актуальным и перспективным методом получения биоразлагаемых синтетических пластиков, например, на основе полиэтилена, полипропилена, полистирола, которые являются наиболее крупнотоннажными, является их модифицирование специальными добавками, вводимыми в полимер на стадии его переработки в процессах экструзии и литья. Существуют добавки, которые позволяют получать полимерные материалы, способные к биоразложению в течение 1–3 лет в зависимости от состава добавки и конкретной рецептуры полимерной композиции.
Читать дальшеИнтервал:
Закладка: