Вокруг Света - Журнал «Вокруг Света» №06 за 2009 год

Тут можно читать онлайн Вокруг Света - Журнал «Вокруг Света» №06 за 2009 год - бесплатно полную версию книги (целиком) без сокращений. Жанр: Циклы. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Журнал «Вокруг Света» №06 за 2009 год
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.2/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Вокруг Света - Журнал «Вокруг Света» №06 за 2009 год краткое содержание

Журнал «Вокруг Света» №06 за 2009 год - описание и краткое содержание, автор Вокруг Света, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Журнал «Вокруг Света» №06 за 2009 год - читать онлайн бесплатно полную версию (весь текст целиком)

Журнал «Вокруг Света» №06 за 2009 год - читать книгу онлайн бесплатно, автор Вокруг Света
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В прошлом чтение цветов побежалости было одним из основных профессиональных навыков мастеров-металлургов. Некоторые из них чувствовали различия в оттенках металла тоньше многих художников. Ведь это был фактически единственный способ контролировать процесс получения качественной стали.

Интерференция волн на воде. Фото: SPL/EAST NEWS

Достичь просветления

Еще одно применение тонких интерференционных пленок — просветление оптики. Современные фотообъективы нередко состоят из десятка стеклянных и пластиковых линз. Каждая из двух десятков их поверхностей отражает около 4% света. Выходит, что более половины всего собранного объективом излучения пропадает зря и, что еще хуже, часть этого рассеянного света, испытывая повторные отражения, доходит до светочувствительной матрицы, создавая на снимке вуаль.

Для уменьшения количества рассеянного света линзы покрывают тонкими прозрачными пленками. Казалось бы, из-за роста числа поверхностей потери на отражение только возрастут, но благодаря интерференции эффект оказывается противоположным. Если взять пленку толщиной в четверть длины волны, световые колебания, отразившиеся от нее и от скрытой за ней поверхности линзы, сдвинутся на половину длины волны, выйдут наружу в противофазе (горбы к впадинам) и полностью погасят друг друга. То есть от поверхности линзы ничего не отразится. Этот прием называют «просветлением оптики», поскольку свет, который не был в итоге отражен, проходит сквозь линзу и участвует в построении изображения. То есть просветление не только подавляет блики, но и снижает потери света в объективе.

Конечно, полное гашение бликов — недостижимый на практике идеал. Свет состоит из волн разной длины, а толщина пленки фиксирована. Обычно ее выбирают так, чтобы наилучшее гашение достигалось в зеленой области спектра, на которую приходится максимальная чувствительность глаза или матрицы фотоаппарата. На краях же спектра подавление бликов работает хуже, и поэтому на просвет оптика с покрытиями выглядит желтовато-оранжевой или сине-фиолетовой. Для полного гашения бликов также нужно, чтобы отражения от поверхности пленки и от стекла под ней имели одинаковую интенсивность, а этого тоже пока добиться не удается. Простое «четвертьволновое» просветляющее покрытие способно снизить потери света на каждой оптической поверхности с 4 до 2%. Для достижения еще большего эффекта применяют многослойные покрытия, которые рассеивают всего полпроцента света.

В воде, где световые волны становятся на четверть короче, цвет таких бабочек меняется. Фото: SPL/EAST NEWS

В обход препятствий

Все приведенные примеры интерференции являются очень простыми. В них исходная волна разделяется на две за счет частичного отражения, а потом полученные волны складываются с небольшим сдвигом. Но есть и более сложные проявления интерференции множества числа волн.

Простейший пример такой сложной интерференции — сам процесс распространения световой волны. Если следовать Гюйгенсу, каждая точка в пространстве, которой достигли световые колебания, сама становится их источником. Но разве в таком случае свет не заполнит все пространство, подобно воде, затопляющей долину?

Объяснение парадокса кроется в тщательном учете влияния всех волн. На каждом гребне находится бесконечное число точек, и каждая из них действительно служит источником маленькой круговой волны. Но если посмотреть, какая картина сложится спустя небольшой промежуток времени, то окажется, что в большинстве точек пространства эти волны, сложившись, погасят друг друга и только немного впереди по ходу первоначальной волны они взаимно усилятся. Это и будет новое положение движущейся волны.

Правда, такой результат получается, только если фронт волны простирается во все стороны и ничем не ограничен. Если же на пути встречается препятствие, волны «затекают» за него, и там, где, казалось бы, должна быть густая тень, появляется немного света. Эта способность обтекать препятствия называется «дифракцией». Нередко ее указывают в числе первичных свойств любых волн. Но, как мы видим, на самом деле дифракция — лишь одно из проявлений интерференции, сложения множества самостоятельно распространяющихся волн.

Дифракция не приводит к полному размыванию света по пространству лишь потому, что по сравнению с предметами повседневного обихода длина световых волн очень мала. Зато в микромире дифракция ставит предел разрешению микроскопов: объекты размером меньше длины волны обтекаются светом, как будто их просто нет. А еще именно благодаря дифракции мы можем пользоваться в домах сотовой связью — радиоволны добираются до сотовых трубок, «затекая» в комнаты наших домов в обход экранирующих железобетонных конструкций.

Александр Сергеев

Рожденные из пыли

Рис. SPL/EAST NEWS

На протяжении нескольких веков космогония — астрономическая дисциплина, изучающая возникновение и развитие планетных систем, — занималась лишь умозрительными гипотезами. Однако в последние десятилетия ситуация радикально изменилась. Теперь космогонические исследования прочно опираются на фундамент физических законов, точных компьютерных моделей и данных наблюдений планетных систем у других звезд.

За полвека до появления теории всемирного тяготения Рене Декарт рассуждал о мировом эфирном вихре, в котором, как пыль на оси смерча, сгущается Солнце, а вокруг вихри поменьше формируют планеты. Это была первая вполне научная космогоническая гипотеза, которая объясняла, почему планеты обращаются вокруг Солнца в одной плоскости и в одном направлении.

Спустя почти два века Пьер Симон Лаплас писал уже о сжатии первичной туманности под действием гравитации и о том, что ее вращение будет при этом ускоряться в соответствии с законом сохранения момента импульса. Когда вращение, полагал он, становится слишком быстрым, от экватора будущего Солнца отделяются кольца газа, из которых потом формируются планеты.

К сожалению, в небулярную (от латинского nebula — «туманность») гипотезу Лапласа никак не укладывалось медленное вращение Солнца вокруг своей оси. Делая один оборот за 26 суток, оно несет всего 2% от полного углового момента (момента импульса, то есть, грубо говоря, «количества» вращательного движения) всего вещества Солнечной системы. Остальные же 98% приходятся на планеты, которые в 750 раз уступают Солнцу по массе. Представьте себе самосвал с песком, тормозящий перед светофором. Из-за резкой остановки немного песка просыпается и по инерции уносится вперед... со скоростью пули. Невероятно? Но столь же парадоксальной выглядит и концентрация большей части вращения Солнечной системы в нескольких ничтожных по массе планетах. Споткнувшись на этой проблеме, космогония полтора века топталась на месте и в какой-то момент даже пошла по неверному пути.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вокруг Света читать все книги автора по порядку

Вокруг Света - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Журнал «Вокруг Света» №06 за 2009 год отзывы


Отзывы читателей о книге Журнал «Вокруг Света» №06 за 2009 год, автор: Вокруг Света. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x