Журнал «Юный техник» - Юный техник, 2009 № 02

Тут можно читать онлайн Журнал «Юный техник» - Юный техник, 2009 № 02 - бесплатно полную версию книги (целиком) без сокращений. Жанр: Циклы, год 2009. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Журнал «Юный техник» - Юный техник, 2009 № 02 краткое содержание

Юный техник, 2009 № 02 - описание и краткое содержание, автор Журнал «Юный техник», читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Популярный детский и юношеский журнал.

Юный техник, 2009 № 02 - читать онлайн бесплатно полную версию (весь текст целиком)

Юный техник, 2009 № 02 - читать книгу онлайн бесплатно, автор Журнал «Юный техник»
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если в промежуток между конденсорными линзами внести, например, горящую свечу, то конвекционные потоки воздуха от ее пламени станут отчетливо видны на экране.

Таким же образом в этом приборе можно использовать столик для горизонтальной диапроекции. Если над ним расположить прямоугольную диафрагму, то, поставив на столик чашку с плоским прозрачным дном, получим миниатюрную волновую ванну, в которой можно показывать те же опыты, что обычно показывают в ваннах, занимающих половину стола.

Теперь несколько слов о наблюдении прозрачных микроорганизмов без их окрашивания. Для этого в столике микроскопа устанавливают «конденсор темного поля», разработанный почти полтора столетия назад немецким оптиком Эрнстом Аббе (1840–1905). По принципу действия он напоминает прибор Теплера.

Напомним, что препарат, который мы рассматриваем под микроскопом, обычно находится в капле воды или масла между двумя стеклами — предметным и покровным. В конденсоре Аббе особая линза направляет свет вдоль поверхности столика микроскопа таким образом, что он испытывает полное внутреннее отражение от верхней поверхности покровного стекла и не попадает в объектив. Поле зрения кажется темным. Если же в жидкости между стеклами оказывается микроорганизм, коэффициент преломления которого отличается от коэффициента преломления воды, то полное внутреннее отражение нарушается. Свет проходит через поверхность стекла, и контуры клетки начинают ярко светиться на темном поле. При этом, кстати, четко отмечается странный и не нашедший пока объяснения эффект: плазма и ядро погибших клеток ярко светятся, тогда как у живых они почти бесцветны.

Схема прибора Теплера 1 источник света 2 линза с фокусным расстоянием 1 м - фото 58

Схема прибора Теплера:

1— источник света; 2— линза с фокусным расстоянием 1 м и диаметром 12 см; 3— прозрачный объект; 4— диафрагма; 5— объектив; 6— экран.

Если перед объективом проектора поставить диафрагму и на ней получить - фото 59

Если перед объективом проектора поставить диафрагму и на ней получить изображение лампы, то небольшая кювета с прозрачным дном заменит волновую ванну метровой длины.

А. ВАРГИН

Рисунки автора

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ

Детекторный… для низкоомных наушников

Для начала простейший детекторный приемник — самая подходящая конструкция. Но вот незадача: более или менее громко он работает с высокоомными телефонами (наушниками) с сопротивлением постоянному току 3,6…4,4 кОм.

Такие телефоны еще выпускают, но на прилавке каждого магазина они не лежат, это уж точно. Зато много низкоомных наушников для плееров, проигрывателей компакт-дисков и тому подобных устройств.

Их можно использовать, применив понижающий трансформатор на выходе приемника, как это сделано в трансляционных громкоговорителях. Но найти подходящий трансформатор тоже проблема, от больших и тяжелых «трансов» отказываются даже в блоках питания современной радиоэлектронной аппаратуры, заменяя их полупроводниковыми импульсными инверторами. Может быть, и нам поступить так же? Посмотрим, как работает понижающий импульсный инвертор постоянного тока (рис. 1).

Основа его транзисторный ключ S1 замыкаемый часто но на очень короткие - фото 60

Основа его — транзисторный ключ S1, замыкаемый часто, но на очень короткие промежутки времени (рис. 2, верхний график).

Управление ключом — электронное, от встроенного генератора. Ключ посылает импульсы через индуктивность L1 в нагрузку R н, но ток через индуктивность быстро изменяться не может (нижний график на рис. 2), поэтому он плавно нарастает в течение импульса, а затем еще более плавно спадает в промежутке между импульсами.

Накопленная в катушке энергия магнитного поля при этом расходуется в нагрузке - фото 61

Накопленная в катушке энергия магнитного поля при этом расходуется в нагрузке. Для прохождения тока при разомкнутом ключе служит диод VD1. Пульсации тока в нагрузке тем меньше, чем больше индуктивность катушки L1. Их можно и еще уменьшить, подключив параллельно R нсглаживающий конденсатор большой емкости, подобно тому, как это сделано на входе инвертора (С1) для уменьшения влияния работы ключа на источник тока.

Мы ясно видим, что выходное напряжение U выхинвертора может быть во много раз меньше, чем входное U вх. Не совсем очевидно, что ток в нагрузке будет во столько же раз больше, но это легко понять, учтя, что во время импульса инвертор потребляет сравнительно большой ток от источника.

После импульса этот ток сохраняется индуктивностью и продолжает поступать в нагрузку, а от источника не потребляется ничего. В среднем потребляемый ток получается малым, а в нагрузке — большим.

Попробуем же применить инвертор в детекторном приемнике. Где взять генератор импульсов для управления ключом? Ведь частота следования импульсов должна быть очень высокой, обязательно выше звукового диапазона (выше 20…30 кГц), иначе мы ничего не услышим, кроме писка самого инвертора. Вы не поверите, но оказывается, что такой импульсный генератор в приемнике уже есть! И частота следования импульсов равна несущей частоте принимаемой радиостанции. Чтобы в этом убедиться, давайте рассмотрим подробнее работу самого детектора и обратимся к схеме простейшего детекторного приемника (рис. 3).

Когда на детекторный диод VD1 поступает положительная полуволна напряжения с - фото 62

Когда на детекторный диод VD1 поступает положительная полуволна напряжения с контура, образованного емкостью антенны и индуктивностью катушки L1, диод открывается и заряжает блокировочный конденсатор С1. Синусоидальная форма ВЧ-сигнала в контуре U анти форма напряжения на конденсаторе U с1показаны на верхнем графике рисунка 4.

Затем конденсатор С1 относительно медленно разряжается через резистор нагрузки - фото 63

Затем конденсатор С1 относительно медленно разряжается через резистор нагрузки R н(высокоомный, заметьте).

Следующая положительная полуволна ВЧ-напряжения снова открывает диод, но лишь на своей вершине. Таким образом, диод открыт лишь короткую часть периода ВЧ-колебаний и ток через него носит характер коротких импульсов.

Надо полагать, что читатель немного знаком с процессом детектирования амплитудно модулированных (АМ) колебаний и понимает, что если амплитуда ВЧ-сигнала растет в такт со звуковым напряжением, то увеличивается и среднее напряжение на конденсаторе С1, а если уменьшается, то и напряжение падает. Тогда вместе с постоянной составляющей напряжения в нагрузке выделятся и колебания звуковых частот.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Журнал «Юный техник» читать все книги автора по порядку

Журнал «Юный техник» - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Юный техник, 2009 № 02 отзывы


Отзывы читателей о книге Юный техник, 2009 № 02, автор: Журнал «Юный техник». Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x