Журнал «Юный техник» - Юный техник, 2004 № 01
- Название:Юный техник, 2004 № 01
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2004
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Журнал «Юный техник» - Юный техник, 2004 № 01 краткое содержание
Популярный детский и юношеский журнал.
Юный техник, 2004 № 01 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Чтобы получить дополнительное тепло, чаще используют механическую энергию. Одну из самых мощных установок для этой цели создал омский изобретатель В.Ф.Кладов. Он предложил центробежный насос, который при своей работе создает прерывистый поток жидкости, и при работе с водой получил двукратный выигрыш в энергии. Испытал Кладов и другие жидкости. Фтористый кремний, например, дал десятикратный выигрыш. Другие ученые, напротив, при самых тщательных измерениях ее не нашли.
Мы предлагаем вам повторить установку Л.Ларионова. Она состоит из обычного насосного агрегата, применяемого для подачи воды на верхние этажи домов. Был взят стандартный агрегат с мотором мощностью 4 кВт. К нему присоединен замкнутый контур из водопроводной трубы, в которую вставлено кавитационное сопло и добавлены некоторые другие элементы.
При работе на обычной воде каждый киловатт-час электроэнергии, взятый насосом от сети, давал 1,5 кВт/ч тепла. Такой эффект можно получить от домашнего кондиционера, работающего в режиме теплового насоса. Но он стоит не менее $ 4000. Водяной насос же почти в сто раз дешевле.
Главная часть установки — сопло. Как видите на рисунке, оно сначала сужается, а затем плавно расширяется. Проходя через сужающуюся часть, поток, по закону Бернулли, увеличивает свою скорость, а давление в нем снижается настолько, что становится равно давлению насыщенных паров воды. При этом вода закипает, в ней образуется множество наполненных паром пузырьков. Далее поток поступает в расширяющуюся часть сопла. Здесь скорость его уменьшается, а давление восстанавливается, и пузырьки начинают схлопываться. Процесс этот завершается уже после выхода из сопла и сопровождается сонолюминесценцией. В эксперименте ее легко наблюдать через специальное окошко в трубе. Видно нечто похожее на факел сварочной горелки.

Устройство теплогенератора:
1— насосный агрегат; 2 и 4— манометры; 3— сопло; 5— регулятор статического давления; 6— дроссельный вентиль; 7— профиль сопла (из работы немецких ученых).
Добавление в воду поваренной соли это свечение усиливает. При этом значительно возрастает и тепловыделение. Как показывают зарубежные исследования, наибольшее усиление достигается, когда в литре воды растворено около 120 г соли.
Эффективность установки сильно зависит от формы сопла. Когда угол расширяющейся части слишком велик, может произойти резкий рост сопротивления, и эффективность снизится.
Для получения высокого прироста тепла важно добиться, чтобы давление жидкости после выхода из сопла по возможности восстанавливалось. Для этого нужно измерять при помощи манометров давление до и после сопла и регулировать сопротивление потоку дроссельным краном.
Установка имеет устройство регулировки начального статического давления воды при помощи поршня, поджимаемого винтом. Чтобы добиться наиболее эффективной работы, потребуется кропотливая наладочная работа, связанная с необходимостью измерения количества выделяющегося тепла и расхода электроэнергии. Если электроэнергию можно измерять при помощи счетчика, то измерение тепла сложнее. Нужно предварительно взвесить и подсчитать удельную теплоемкость всего агрегата, а потом, измеряя рост его температуры после запуска, вычислять выделившееся количество теплоты, затем, разделив количество выделившегося тепла на затраченную за это время энергию, получить КПД или, точнее, эффективность теплогенерирующей установки. Но грубо настроить систему вы можете и по температуре трубы.
Если установка отлажена на обычной воде, ее можно непосредственно подключить к действующей отопительной системе. Однако опыт показывает, что в первые дни работы под действием кавитации будет очень интенсивно смываться имеющаяся в трубах грязь. Теплогенератор придется несколько раз разбирать и чистить. Но грязь рано или поздно закончится, и вы сможете спокойно пользоваться дешевым теплом.
Очень, конечно, заманчиво применить соленую воду, но помните: соль разъедает металлические трубы, а использование промежуточного теплообменника связано с дополнительными потерями, которые могут свести эффективность соли к нулю.
А.ИЛЬИН
Рисунок автора
ЗА СТРАНИЦАМИ ВАШЕГО УЧЕБНИКА
Находки профессора Поля
Профессор Геттингенского университета Роберт Вихард Поль(1884–1976) прославился не столько своим вкладом в физику, сколько умением ее преподавать. Не секрет, что год от года сама физика явлений, их осязаемая суть, как из учебников, так и из науки, все больше и больше вымывались математикой. Однако профессор Поль, сопровождая свои лекции остроумными экспериментами, оставался верен традициям XIX века: при разумном количестве математических выкладок они были всем понятны и, главное, интересны.
Вот некоторые из них.
Желая продемонстрировать, что любая, даже самая ничтожная, сила, приложенная к предмету, обязательно его деформирует, профессор Поль использовал массивный дубовый стол, два зеркала и собственный палец. Направив на зеркала пучок света от проекционного фонаря, профессор несильно нажимал пальцем на крышку стола. При малейшем нажатии было видно, как световой зайчик на стене заметно перемещается (см. рис. 1).

Современный школьный класс меньше аудитории, где Поль читал лекции, поэтому опыт лучше демонстрировать с лазерной указкой, дающей очень узкий луч света, и поставить зеркала так, чтобы луч отразился от них много раз. За счет этого многократно увеличится и смещение светового зайчика на стене, так что опыт можно показывать даже в небольшой комнате.
А вот еще один опыт. Если вам приходилось работать длинным тонким сверлом, то вы могли заметить, как оно порой закручивается вдоль оси, а как убедиться, что то же происходит с толстыми сверлами? Ведь чтобы заметно «скрутить» стальной стержень толщиною в палец, нужна огромная сила. (Сопротивление стержня закручиванию, кстати, пропорционально четвертой степени его диаметра.) Однако Р.-В.Поль показал, что даже такой стержень можно закрутить вдоль оси всего лишь двумя пальцами. Для этого он зажал его в слесарные тиски и укрепил на нем пару зеркал.
Пропущенный через зеркала луч света (см. рис. 2) падал на стену в десяти метрах от лабораторного стола. Световой зайчик заметно сдвигался, когда любой из студентов легко закручивал стержень двумя пальцами.
Читать дальшеИнтервал:
Закладка: