Шон Кэрролл - Вечность. В поисках окончательной теории времени

Тут можно читать онлайн Шон Кэрролл - Вечность. В поисках окончательной теории времени - бесплатно полную версию книги (целиком) без сокращений. Жанр: Современная проза, издательство ООО «ЛитРес», www.litres.ru, год 101. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Вечность. В поисках окончательной теории времени
  • Автор:
  • Жанр:
  • Издательство:
    ООО «ЛитРес», www.litres.ru
  • Год:
    101
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Шон Кэрролл - Вечность. В поисках окончательной теории времени краткое содержание

Вечность. В поисках окончательной теории времени - описание и краткое содержание, автор Шон Кэрролл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Вечность. В поисках окончательной теории времени - читать онлайн бесплатно полную версию (весь текст целиком)

Вечность. В поисках окончательной теории времени - читать книгу онлайн бесплатно, автор Шон Кэрролл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Физика шахматной доски A обладает определенной степенью симметрии, например инвариантностью относительно сдвига по времени . Это означает, что законы физики не меняются во времени от момента к моменту. Мы можем сместить точку наблюдения вперед или назад во времени (вверх или вниз по столбцам), но правило «квадратик прямо над текущим находится точно в таком же состоянии» продолжит выполняться. [113]Симметрии так и работают: вы что-то делаете, но это ничего не меняет – правила продолжают действовать, как и раньше. Мы уже говорили о том, что реальный мир также инвариантен относительно сдвига по времени: с течением времени законы физики не меняются.

Кроме того, на шахматной доске A можно заметить еще один вид симметрии – инвариантность относительно обращения времени . Смысл такого вида симметрии очевиден: мы заставляем время идти в обратную сторону и наблюдаем за происходящим. Если результат «выглядит точно так же» – то есть создается впечатление, что «перевернутая» система подчиняется тем же законам физики, что и первоначальная расстановка, – то мы говорим, что действующие в системе правила инвариантны относительно обращения времени. Для того чтобы проверить это на шахматной доске, нужно зеркально отразить ее, выбрав осью симметрии какую-нибудь строку. При условии, что действующие на шахматной доске правила также инвариантны относительно сдвига по времени, совершенно неважно, какую строку мы выберем, так как они все равны. Если правила, с помощью которых мы описывали исходную расстановку, так же действуют в новом шаблоне, то можно утверждать, что шахматная доска инвариантна относительно обращения времени. Очевидно, что образец A , в котором каждый столбец содержит квадратики только одного цвета, обладает данным типом инвариантности: отраженный шаблон не только подчиняется тем же правилам, он еще и стопроцентно совпадает с исходным.

Для того чтобы лучше прочувствовать идею, давайте рассмотрим более интересный пример. На рис. 7.4 показан еще один мир шахматной доски, обозначенный B . Теперь мы видим два разных шаблона размещения серых квадратиков: диагональные линии, идущие в обоих направлениях (получившийся рисунок немного напоминает световые конусы, не правда ли?). И снова мы можем описать получившуюся схему размещения серых и белых квадратиков в терминах развития от одного момента времени к следующему. Нужно только не забывать о том, что в каждой конкретной строке нам недостаточно отслеживать цвет одного-единственного квадратика. Мы обязаны следить за тем, какие типы диагональных линий из серых квадратиков проходят через эту точку (и проходят ли вообще). Каждую клетку можно пометить одним из четырех состояний: «белая», «диагональная линия серых квадратиков проходит вверх и вправо», «диагональная линия серых квадратиков проходит вверх и влево», «диагональная линия серых квадратиков проходит в обе стороны». Если мы опишем любую произвольную строку всего лишь как последовательность нулей и единиц, этого будет недостаточно, чтобы понять, как будет выглядеть следующая строка. [114]Все выглядит так, будто мы обнаружили в рассматриваемой Вселенной два типа «частиц»: одни движутся всегда только налево, а другие – только направо, причем частицы разных типов никак не взаимодействуют между собой и не влияют друг на друга.

Что произойдет с шахматной доской B , если мы поменяем направление времени на обратное? Суть этого шахматного мира останется прежней, однако фактическое расположение белых и серых квадратиков, разумеется, изменится (в отличие от шахматной доски A , где вне зависимости от направления времени мы получали один и тот же набор белых и серых клеток). На второй панели рис. 7.4, обозначенной B' , показан результат зеркального отражения относительно одной из строк шахматной доски B . В частности, диагональные линии, проходившие из левого нижнего угла в правый верхний, теперь протянулись из левого верхнего в правый нижний, и наоборот.

Рис 74Шахматная доска B слева характеризуется чуть более сложной - фото 36

Рис. 7.4.Шахматная доска B (слева) характеризуется чуть более сложной динамикой, чем шахматная доска A: в этом примере диагональные линии, состоящие из серых квадратиков, следуют в обоих направлениях. Шахматная доска B' (справа) иллюстрирует результат обращения времени на доске B относительно центральной строки

Инвариантен ли мир шахматной доски из примера B относительно обращения времени? Определенно, это так. Пусть изменение направления времени относительно произвольно выбранной строки и меняет индивидуальное распределение белых и серых клеток – это не важно. Важно то, что неизменными остаются «законы физики», то есть правила, которым подчиняются схемы закрашивания квадратиков. В исходном примере B , до изменения направления времени, правила гласили, что существуют два типа диагональных линий, содержащих серые клетки. То же самое верно и для B' . И пусть два типа линий обмениваются личинами; это не отменяет того факта, что как в состоянии «до», так и в состоянии «после» мы наблюдаем одни и те же два типа линий. Таким образом, воображаемые физики из мира шахматной доски B объявили бы, что законы природы инвариантны относительно изменения направления времени.

В Зазеркалье

Ну что, рассмотрим еще один мир шахматной доски? Теперь это будет шахматная доска C , показанная на рис. 7.5. И снова действующие в этом мире правила кажутся довольно простыми: мы видим только диагональные линии, протянувшиеся из левого нижнего угла в правый верхний. Попробуем сформулировать правило «предсказания будущего» в терминах пошагового развития: «если мы знаем состояние любого конкретного квадратика, то мы также знаем, что квадратик на один шаг выше и правее него находится в том же самом состоянии». Определенно, данное правило инвариантно относительно переноса во времени, так как результат его применения абсолютно не зависит от того, с какой строки мы начнем.

Рис 75В шахматном мире C присутствуют только диагональные линии серых - фото 37

Рис. 7.5.В шахматном мире C присутствуют только диагональные линии серых квадратиков, идущие из левого нижнего угла в правый верхний. Если изменить направление времени на противоположное, то мы получим картинку C', на которой нет ничего, кроме диагональных линий из правого нижнего угла в левый верхний. Строго говоря, шахматная доска C не инвариантна относительно изменения направления времени – она инвариантна относительно одновременного отражения в пространстве и во времени

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Шон Кэрролл читать все книги автора по порядку

Шон Кэрролл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Вечность. В поисках окончательной теории времени отзывы


Отзывы читателей о книге Вечность. В поисках окончательной теории времени, автор: Шон Кэрролл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x