Шон Кэрролл - Вечность. В поисках окончательной теории времени
- Название:Вечность. В поисках окончательной теории времени
- Автор:
- Жанр:
- Издательство:ООО «ЛитРес», www.litres.ru
- Год:101
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Шон Кэрролл - Вечность. В поисках окончательной теории времени краткое содержание
Вечность. В поисках окончательной теории времени - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Другие энтропии, другие стрелы
В наших рассуждениях мы дали четкие определения энтропии и стрелы времени. Энтропия – это число состояний, неразличимых с точки зрения макроскопического наблюдателя, а стрела времени возникает, потому что во всей обозримой Вселенной энтропия непрерывно увеличивается. Несмотря на то что, формулируя эти определения, мы отталкивались от свойств реального мира, другие люди, употребляя те же самые термины, могут подразумевать что-то совершенно иное.
Определение энтропии, с которым мы работаем, – то самое, что выгравировано на могильной плите Больцмана, – связывает с каждым индивидуальным микросостоянием определенную энтропию. Главная особенность этого определения – его двухэтапность. Сначала мы принимаем решение о том, что же можно считать «макроскопически неразличимыми» характеристиками состояния, а затем на основании этого разбиваем все пространство состояний на части – набор макросостояний. Для вычисления энтропии микросостояния мы берем общее число макроскопически неотличимых от него микросостояний и вычисляем ее логарифм.
Однако обратите внимание на то, что здесь происходит кое-что очень интересное. Пусть некоторое состояние эволюционирует с течением времени из низкоэнтропийной области в высокоэнтропийную. Пусть мы потеряли всю информацию об этом состоянии, кроме макросостояния, которое оно проходит в данный момент времени. Тогда со временем мы будем обладать все меньшей информацией о микросостоянии, которое рассматриваем. Другими словами, когда нам говорят, что система принадлежит определенному макросостоянию, вероятность того, что она находится в конкретном микросостоянии из этого макросостояния, с увеличением энтропии уменьшается – просто потому, что число вариантов стремительно возрастает. Точность нашей информации о состоянии – насколько верно мы определили микросостояние – уменьшается по мере того, как энтропия увеличивается.
Это подразумевает необходимость иного подхода к определению энтропии, и альтернативный взгляд традиционно связывают с именем Джозайи Уилларда Гиббса (в действительности Больцман исследовал похожие определения, но нам удобнее ассоциировать новый подход именно с Гиббсом, потому что у Больцмана уже один есть). Вместо того чтобы рассматривать энтропию как характеристику состояний, а именно числа других состояний, макроскопически неотличимых от рассматриваемого, – мы могли бы считать энтропию мерой того, что нам известно о состоянии. В больцмановском подходе сведения о том, в каком макросостоянии мы находимся, по мере увеличения энтропии теряют информативность: мы не понимаем, о каком микросостоянии идет речь. Гиббс то же самое рассматривает с другой стороны, и у него энтропия определяется в терминах того, как много мы знаем. Вместо того чтобы фильтровать пространство состояний, мы начинаем с распределения вероятностей, указывающего для каждого возможного микросостояния шанс, что система действительно сейчас находится в нем. Также Гиббс дает нам формулу, аналогичную больцмановской, для расчета энтропии, связанной с данным распределением вероятностей. [144]Ничего огрублять не приходится.
И все же ни больцмановскую формулу для энтропии, ни формулу Гиббса нельзя назвать «правильной». Мы сами вводим эти определения, манипулируем ими и используем для того, чтобы лучше понять мир; у каждой свои преимущества и недостатки. Формулу Гиббса часто применяют в прикладных задачах по одной простой причине: ее проще использовать. Поскольку огрубление отсутствует, дискретного изменения значения энтропии при переходе системы от одного макросостояния к другому не происходит – это важное преимущество, упрощающее решение уравнений.
Однако подход Гиббса обладает двумя заметными недостатками. Один из них эпистемологический: идея «энтропии» здесь связывается с нашими знаниями о системе, а не с самой системой. У людей, старающихся с большой осторожностью рассуждать о том, что же такое на самом деле энтропия, это продолжает вызывать страшную головную боль, и споры насчет обоснованности этого подхода не утихают. Но тот подход, которого я решил придерживаться в этой книге: считать энтропию характеристикой состояния, но не характеристикой наших знаний о нем, – вроде бы позволяет избежать большинства проблемных вопросов.
Второй недостаток куда значительнее: если вам известны законы физики и вы примените их для изучения эволюции «энтропии Гиббса» с течением времени, вы обнаружите, что ее величина не меняется. Если вдуматься, то никакой ошибки здесь нет. Энтропия Гиббса описывает то, насколько хорошо мы понимаем текущее состояние системы. Однако при условии обратимости физических законов данная величина меняться не будет, ведь информация не возникает и не разрушается. Для того чтобы энтропия увеличивалась, в будущем у нас должно стать меньше сведений о состоянии системы, чем есть сейчас; но мы всегда можем прокрутить пленку назад и посмотреть, что было раньше, поэтому такая ситуация невозможна. Вывести второе начало термодинамики или что-то подобное, придерживаясь подхода Гиббса, можно только в том случае, если «забыть» часть информации о движении. Но если копнуть поглубже, то станет очевидно, что с философской точки зрения это то же самое, что огрубление, с которым мы имели дело в больцмановском подходе; просто мы перенесли процедуру «забывания» из пространства состояний на уравнения движения.
Тем не менее практическая польза формулы Гиббса для определенных приложений не вызывает сомнения, и ученые продолжают активно пользоваться ею. Однако и это еще не конец истории; существует несколько других известных подходов к изучению энтропии, а в литературе непрерывно продолжают появляться упоминания о новых. Ничего странного в этом нет; в конце концов, определения Больцмана и Гиббса должны были заменить вполне достойное определение энтропии, данное Клаузиусом, но оно и по сей день используется под названием термодинамической энтропии. После появления на сцене квантовой механики Джон фон Нейман предложил формулу для энтропии, особым образом адаптированную под квантовый мир. Клод Шеннон сформулировал определение энтропии, очень близкое по духу к гиббсоновскому, однако в рамках информационной теории, а не физики – об этом мы поговорим в следующей главе. Смысл не в том, чтобы найти одно-единственное истинное определение энтропии. Ученые придумывают понятия, служащие полезным целям в определенных случаях, и это абсолютно нормально. Не позволяйте никому одурачить вас заявлениями о «единственно верном определении», уникальным образом раскрывающем суть такого явления, как энтропия.
Читать дальшеИнтервал:
Закладка: