Юрий Артамонов - Ли Смолин. Возрожденное время: От кризиса в физике к будущему вселенной
- Название:Ли Смолин. Возрожденное время: От кризиса в физике к будущему вселенной
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Артамонов - Ли Смолин. Возрожденное время: От кризиса в физике к будущему вселенной краткое содержание
════Реально ли время? Релятивистский и квантовый полюса современной физики свидетельствуют, что нет, и время является иллюзией. Будущее с точки зрения законов физики фундаментально не отличается от прошлого и полностью определено этими законами и начальными условиями вселенной. Однако, иллюзорность времени приводит к ряду парадоксов и вопросов, на которые нет ответа или приходится отвечать так, что остается неудовлетворенность и чувство тупика. Пример: почему мы имеем те законы, которые имеем? Доминирующая сейчас космологическая парадигма ссылается на теории мультивселенной и антропный принцип, что принципиально не проверяемо и не дает предсказаний наблюдаемых явлений.
════Американский физик-теоретик Ли Смолин в своей четвертой книге "Возрожденное время" утверждает, что есть иной выход. Все обоснования иллюзорности времени опровергаемы. Признание реальности времени открывает ряд новых интригующих возможностей. Например, что законы природы эволюционируют в этом реальном времени и могут быть объяснены своей историей. Или что можно обойти конфликт между объяснением квантовых явлений через скрытые переменные (неизбежно нелокальным) и принципом относительности.
════ Книга программная и вводная, она анонсирует строгий натурфилософский труд по вопросу реальности времени и эволюции законов, который пишется сейчас Смолином вместе с бразильским философом Роберто Унгером. Будет крайне интересно проследить за развитием объявленных идей.
Ли Смолин. Возрожденное время: От кризиса в физике к будущему вселенной - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Хотя совершенная окружность и парабола никогда не встречаются в природе, они разделяют с природными объектами одну особенность: сопротивляемость манипуляциям со стороны нашей фантазии и нашего желания. Число π - отношение длины окружности к ее диаметру - суть идея. Но как только его концепция изобретена, его величина становится объективным свойством, одним из тех, что
к оглавлению
должны быть открыты с помощью дальнейших рассуждений. Предпринимались попытки законодательно определить величину π, и они приводили к глубокому недоразумению. Никакое количество желания не сделает величину π хоть сколько-нибудь другой, чем она есть. То же самое верно для всех других свойств кривых и других объектов математики; эти объекты таковы, каковы они есть, и мы можем быть правыми или ошибаться в отношении их свойств, но мы не можем изменить их.
Большинство из нас преодолели нашу неспособность летать. В конечном счете, мы признаем, что мы не имеем влияния на многие аспекты природы. Но не тревожит ли слегка, что имеются концепции, существующие только в наших разумах, чьи свойства также объективны и независимы от наших желаний, как вещи природы? Мы изобретаем кривые и числа математики, но с момента, как мы их изобрели, мы не можем их поменять.
Но даже если кривые и числа имеют сходство с объектами естественного мира по стабильности их свойств и по их сопротивляемости нашей воле, они не те же самые, что и природные объекты. У них нет одного базового свойства, присущего каждой отдельной вещи в природе. Здесь в реальном мире всегда имеет место некоторый момент времени. Все, что мы знаем в мире, участвует в течении времени. Каждое наблюдение, которое мы делаем о мире, можно датировать. Каждый из нас и все, что мы знаем о природе, существует в интервале времени; до или после этого интервала мы и наши знания не существуем.
Кривые и другие математические объекты не живут во времени. Величина π не появляется с даты, до которой она была другой или неопределенной и после которой она изменится. Если верно, что две параллельные линии на плоскости никогда не встречаются, как определено Евклидом, то это всегда было и всегда будет верным. Утверждения о математических объектах, подобных кривым и числам, верны в том смысле, который не нуждается ни в какой оговорке по отношению ко времени. Математические объекты переступают пределы времени. Но как что-нибудь может существовать без существования во времени? [3].
Люди спорили об этих проблемах тысячелетиями, и философы все еще должны достичь согласия по их поводу. Но одно предположение было на столе всегда с тех пор, когда эти вопросы впервые обсуждались. Оно заключалось в том, что кривые, числа и другие математические объекты существуют столь же жестко, как то, что мы видим в природе, - исключая то, что они не в нашем
к оглавлению
мире, а в другой области, области без времени. Так что нет двух видов вещей в нашем мире, ограниченных временем вещей и вещей, не зависящих от времени. Вместо этого имеется два мира: мир, ограниченный временем, и мир, не зависящий от времени.
Идея, что математические объекты существуют в отдельном, не зависящем от времени мире часто ассоциируется с Платоном. Он полагал, что когда математик говорит о треугольнике, это не любой треугольник в мире, а идеальный треугольник, который точно такой же как реальный (и даже более такой), но существует в другой области, области за пределами времени. Теорема, что сумма углов в треугольнике равна 180 градусов, выполняется не точно для любого реального треугольника в нашем физическом мире, но она абсолютно и точно верна для идеального математического треугольника, существующего в математическом мире. Так что, когда мы доказываем теорему, мы добываем знание о чем-то, что существует вне времени, и демонстрируем правильность того, что оно также не ограничено настоящим, прошлым и будущим.
Если Платон прав, то просто путем рассуждений мы, люди, можем преодолеть время и изучить вневременные истины о вневременной области бытия. Некоторые математики утверждают, что вывели определенное знание о реальности Платона. Это утверждение, если оно верно, дает им черты божественности. Как они себе представляют, они этого достигли? Заслуживает ли доверия их утверждение?
Когда я хочу получить дозу платонизма, я приглашаю моего друга Джима Брауна на ланч. Мы оба наслаждаемся хорошей едой, во время которой он будет снисходителен и, пусть не сразу, объяснит аргументы веры во вневременную реальность математического мира. Джим необычен среди философов в соединении бритвенно острого ума с солнечным нравом. Вы чувствуете, что он счастлив в жизни, и это делает вас счастливым, что вы его знаете. Он хороший философ; он знает все аргументы с каждой стороны, и он не затрудняется дискутировать с теми, кого он не может опровергнуть. Но я не нашел способа поколебать его убежденность в существовании вневременной реальности математических объектов. Я иногда размышляю, не дает ли его вера в истины за пределами человеческого кругозора вклад в его счастье быть человеком.
Один вопрос, который Джим и другие платонисты признают тяжелым для ответа, заключается в том, как мы, люди, чья жизнь ограничена во времени, в контакте только с другими также ограниченными вещами можем получать определенное
к оглавлению
знание о вневременной реальности математики. Мы пришли к правильности математики через умозаключения, но можем ли мы быть на самом деле уверены, что наши умозаключения корректны? На самом деле, не можем. Время от времени в опубликованных в книгах доказательствах открываются ошибки, так что, похоже, что ошибки остаются. Вы можете попытаться обойти трудность, утверждая, что математические объекты вообще не существуют, даже вне времени. Но какой смысл имеет утверждение, что мы имеем надежное знание об области несуществующих объектов?
Другой друг, с которым я обсуждал платонизм, это английский математический физик Роджер Пенроуз. Он придерживается взгляда, что истины математического мира имеют реальность, не охватываемую любой системой аксиом. Он следует великому логику Курту Гёделю в утверждении, что мы можем непосредственно обосновать истины по поводу математической реальности - истины, которые находятся за пределами формального аксиоматического доказательства. Однажды он сказал мне нечто, подобное следующему: 'Ты определенно прав, что один плюс один равно два. Это факт по поводу математического мира, что ты можешь ухватиться за свою интуицию и быть в ней уверен. Так что один-плюс-один-равно-два является само по себе достаточным подтверждением, что доказательство может преодолеть время. А как насчет два плюс два равно четыре? Ты уверен в этом тоже! Теперь как насчет пять плюс пять равно десять? Ты и в этом не сомневаешься? Так что имеется очень большое число фактов о не зависящей от времени реальности математики, которые ты уверен, что знаешь'. Пенроуз верит, что наш разум может преодолеть постоянно изменяющееся течение жизненного опыта и дотянуться до вечной безвременной реальности за его пределами [4].
Читать дальшеИнтервал:
Закладка: