Маркус дю Сотой - Искусство мыслить рационально. Шорткаты в математике и в жизни

Тут можно читать онлайн Маркус дю Сотой - Искусство мыслить рационально. Шорткаты в математике и в жизни - бесплатно ознакомительный отрывок. Жанр: Психология, личное, год 2022. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Искусство мыслить рационально. Шорткаты в математике и в жизни
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2022
  • Город:
    Москва
  • ISBN:
    978-5-389-21362-3
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Маркус дю Сотой - Искусство мыслить рационально. Шорткаты в математике и в жизни краткое содержание

Искусство мыслить рационально. Шорткаты в математике и в жизни - описание и краткое содержание, автор Маркус дю Сотой, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Принято считать, что залог успеха – упорный труд. Но подлинный успех приносит вовсе не он – его приносят шорткаты: более короткие и вместе с тем более легкие, более быстрые и более удобные пути решения той или иной задачи. Благодаря таким рациональным путям мы добиваемся выдающихся результатов. А по словам одного из величайших в мире математиков Маркуса дю Сотоя, математика – самое настоящее искусство шортката и лучшее средство экономии времени. Каждый из нас может сделать свою жизнь комфортнее при помощи нескольких шорткатов.
«У вас есть выбор. Есть очевидный маршрут, долгий и утомительный, на котором ничего красивого по пути не увидишь. Путешествие по нему займет массу времени и оставит вас совершенно без сил, но рано или поздно вы всетаки доберетесь до места назначения. Но есть и другая дорога. Найти, где она ответвляется от основного пути, совсем не просто – причем кажется, что она уводит вас прочь от цели, а не приближает к ней. Но затем вы замечаете указатель с надписью “шорткат”. Он обещает быстрый переход по пересеченной местности, который позволит вам добраться до цели за меньшее время и с минимальными затратами усилий. Выбор за вами. Эта книга направляет вас по второму пути. Это ваш шорткат к лучшему мышлению, которое понадобится вам, чтобы пройти по этому нестандартному маршруту и попасть именно туда, куда вам хочется». (Маркус дю Сотой)
В формате PDF A4 сохранён издательский дизайн.

Искусство мыслить рационально. Шорткаты в математике и в жизни - читать онлайн бесплатно ознакомительный отрывок

Искусство мыслить рационально. Шорткаты в математике и в жизни - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Маркус дю Сотой
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1, 2, 4, 8, 16 …

Что, если я скажу вам, что следующее число в этой последовательности – не 32, а 31?

Если взять круг, отмечать на его окружности точки и соединять все эти точки прямыми линиями, каково будет максимальное число областей, на которые можно разделить этот круг? Если точка всего одна, никаких линий не будет и область получится тоже всего одна. Если добавить еще одну точку, две точки можно соединить линией, которая разделит круг на две области. Добавим третью точку. Проведя все возможные линии, соединяющие эти точки, получим треугольную фигуру, окруженную тремя секторами круга: всего четыре области.

Рис 11 Первые пять чисел деления круга Если продолжить действовать таким же - фото 1

Рис. 1.1. Первые пять чисел деления круга

Если продолжить действовать таким же образом, кажется, что проявляется паттерн. Вот данные по числу областей, получающихся при добавлении очередных точек на окружности:

1, 2, 4, 8, 16 …

В этот момент разумно предположить, что добавление очередной точки удваивает число областей. Проблема заключается в том, что этот паттерн нарушается, как только я добавляю шестую точку. Как ни старайся, число областей, на которые линии разбивают круг, оказывается равным 31. А вовсе не 32!

Рис 12 Шестое число деления круга Для числа областей существует формула но - фото 2

Рис. 1.2. Шестое число деления круга

Для числа областей существует формула, но она чуть сложнее, чем простое удвоение. Если на окружности есть N точек, максимальное число областей, которые можно получить, соединяя эти точки, равно

1/24 ( N 4– 6 N 3+ 23 N 2– 18 N + 24).

Мораль тут следующая: важно знать, что именно описывают ваши данные, а не полагаться на одни лишь числа. Обработка данных может быть делом опасным, если она не сочетается с глубоким пониманием того, откуда взялись эти данные.

Вот еще одно предостережение относительно шорткатов такого рода. Каким должно быть следующее число в этой последовательности?

2, 8, 16, 24, 32 …

В ней много степеней двух. Но что там делает число 24? В общем, если вы сумели заключить, что следующее число этой последовательности – 47, я советую вам в ближайшую же субботу купить лотерейный билет. Это выигрышные номера тиража британской Национальной лотереи, разыгранного 26 сентября 2007 года. Мы настолько пристрастились к поиску паттернов, что часто видим их там, где никакого паттерна ожидать нельзя. Лотерейные билеты выпадают случайным образом. Без паттернов. Без тайных формул. Шорткатов к миллионным состояниям не бывает. Однако в главе 8 я объясню, что даже случайные вещи следуют неким паттернам, которые можно рассматривать в качестве потенциальных шорткатов. Если речь идет о случайностях, шорткатом будет рассмотрение долгосрочной перспективы.

Концепцию паттерна можно использовать в качестве шортката к пониманию того, действительно ли какое-либо явление случайно, и этот метод имеет отношение к легкости запоминания числовых последовательностей.

Шорткат к хорошей памяти

Поскольку в интернете каждую секунду появляется огромное количество данных, компании ищут более рациональные способы их хранения. Выявление паттернов в данных облегчает их сжатие, благодаря которому для их хранения требуется меньше места. Именно эта идея лежит в основе технологий, подобных форматам JPEG или MP3.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Примечания

1

Английское слово shortcut , центральное в этой книге, не имеет точного аналога в русском языке. Его часто переводят выражением «короткий путь», но оно не вполне передает нужное значение. Такой путь далеко не всегда бывает физически более коротким: он может быть более быстрым, более легким, более удобным и т. д. Поэтому кажется целесообразным использовать в переводе этой книги слово «шорткат», уже существующее (особенно в контексте информатики), хотя еще и не вполне закрепившееся, в русском языке. – Здесь и далее, если не указано иное, примеч. перев .

2

Историческая достоверность этого эпизода небесспорна: в точности то же самое рассказывают, например, о Лобачевском и о Спинозе. Это, однако, нисколько не умаляет ни гениальности всех этих мыслителей, ни изящества решения.

3

При заданном объеме.

4

Еще одно богатое значениями английское слово, которое, кажется, лучше позаимствовать, чем передавать многословными выражениями. В зависимости от контекста оно может означать рисунок, узор, канву, выкройку, шаблон, систему, характер, закономерность и т. д. Трудность перевода слова pattern на другие языки обсуждается и в главе 3 этой книги.

5

Дифференциальное и интегральное исчисление.

6

Этот разговор происходит в начале 4-й главы 1-й книги трилогии.

7

The Simpsons, S06E04, Itchy & Scratchy Land (1994).

8

Из эссе «Критик как художник» (The Critic as Artist, 1891), пер. с англ. А. М. Зверева. Цит. по: Уайльд О. Собр. соч.: В 3 т. М.: Терра – Книжный клуб, 2003. Т. 3.

9

Из первого эссе серии «Бездельник» (The Idler), публиковавшейся в лондонском еженедельнике Universal Chronicle с апреля 1758 по апрель 1760 г.

10

Цит. по: Кристи А. Автобиография / Пер. с англ. В. Чемберджи, И. Дорониной. М.: Вагриус, 1999.

11

Хоум-ран ( home run ) – игровая ситуация, в которой отбивающий игрок успевает обежать все четыре «базы» поля, пока отбитый им мяч не окажется в руках игрока команды противника. Если ему удается отбить мяч за пределы поля, хоум-ран засчитывается автоматически.

12

Легко заметить, что эти слова родственны русским «практика» и «поэзия». В классификации Аристотеля был и третий вид деятельности – теория (θεωρία), то есть деятельность, направленная на познание истины.

13

Цит. по: Маркс К. Критика Готской программы // Избранные произведения: В 2 т. / Под ред. М. Б. Митина. М.: ОГИЗ, Государственное издательство политической литературы, 1940. Т. II. С. 453.

14

Цит. по: Маркс К. Капитал. Критика политической экономии. / Пер. с нем. И. И. Степанова-Скворцова, испр. и доп. Т. 3. Ч. 1 и 2. М.: Государственное издательство политической литературы, 1951. С. 833.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Маркус дю Сотой читать все книги автора по порядку

Маркус дю Сотой - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Искусство мыслить рационально. Шорткаты в математике и в жизни отзывы


Отзывы читателей о книге Искусство мыслить рационально. Шорткаты в математике и в жизни, автор: Маркус дю Сотой. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x