БСЭ - Большая Советская энциклопедия (ДЕ)
- Название:Большая Советская энциклопедия (ДЕ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ - Большая Советская энциклопедия (ДЕ) краткое содержание
Большая Советская энциклопедия (ДЕ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Лит.: Гуткин Л. С., Лебедев В. Л., Сифоров В. И., Радиоприёмные устройства, ч. 1, М., 1961; Гоноровский И. С., Радиотехнические цепи и сигналы, ч. 2, М., 1967; Чистяков Н. И., Хлытчиев С. М., Малочинский О. М., Радиосвязь и радиовещание, 2 изд., М., 1968.
Ю. Б. Любченко.
Рис. 1. Схемы амплитудного детектора с полупроводниковым диодом: а — последовательного, б — параллельного; L к— катушка индуктивности и С к— конденсатор колебательного (резонансного) контура; U вых— выходное напряжение; R ф— резистор фильтра; С ф— конденсатор фильтра; D — полупроводниковый диод.
Рис. 2. Балансная схема фазового детектора: Т р— трансформатор; D 1и D 2— полупроводниковые диоды; Е — источник опорных колебаний; С — конденсатор и R — резистор, составляющие нагрузку детектора; U вх— входное напряжение; U вых— выходное напряжение.
Детекторный радиоприёмник
Дете'кторный радиоприёмник,простейший радиоприёмник, в котором принятые сигналы радиостанций не усиливаются, а лишь преобразуются в звуковые сигналы (детектируются) контактным кристаллическим детектором. Обычно Д. р. содержит колебательный контур , кристаллический детектор (полупроводниковый диод), головной телефон и блокировочный конденсатор, которые соединены по схеме, приведённой на рис. Изменением ёмкости конденсатора С колебательный контур настраивают в резонанс с несущей частотой принимаемой радиостанции, ослабляя тем самым все сигналы, частоты которых отличаются от резонансной. Достаточно громкий звук в телефоне получался при нахождении проволочной стальной пружинкой «чувствительной точки» (контакта с наибольшим детектирующим эффектом) на поверхности кристалла из галена или пары «цинкит-халькопирит», обладающих полупроводниковыми свойствами (этот тип детектора был распространён в 20-е гг. 20 в. Позже в качестве детектора применяли германиевый и др. полупроводниковые диоды с постоянной «чувствительной точкой»). На выходе кристаллического детектора токи высокой (радио) частоты проходят главным образом через конденсатор С б , а токи низкой (звуковой) частоты — через телефон. В Д. р. нет собственного источника электрической энергии и все процессы происходят только за счёт энергии принимаемых радиоволн. На Д. р. с высоко подвешенной внешней антенной и правильно выполненным заземлением возможно принимать мощные радиовещательные станции на расстоянии нескольких тысяч км . С распространением ламповых радиоприёмников Д. р. потерял своё значение.
Схема простого детекторного радиоприёмника: А — антенна; С — конденсатор переменной ёмкости и L — катушка индуктивности колебательного контура; D — кристаллический детектор; С б— блокировочный конденсатор; Т — головной телефон; З — заземление.
Детекторы ядерных излучений
Дете'кторы я'дерных излуче'ний,приборы для регистрации альфа- и бета-частиц, рентгеновского и гамма-излучения, нейтронов, протонов и т.п. Служат для определения состава излучения и измерения его интенсивности (см. также Дозиметрия ), измерения спектра энергий частиц, изучения процессов взаимодействия быстрых частиц с атомными ядрами и процессов распада нестабильных частиц. Для последней наиболее сложной группы задач особенно полезны Д. я. и., позволяющие запечатлевать траектории отдельных частиц — Вильсона камера и её разновидность диффузионная камера , пузырьковая камера , искровая камера , ядерные фотографические эмульсии . Действие всех Д. я. и. основано на ионизации или возбуждении заряженными частицами атомов вещества, заполняющего рабочий объём Д. я. и. В случае g-квантов и нейтронов ионизацию и возбуждение производят вторичные заряженные частицы, возникающие в результате взаимодействия гамма-квантов или нейтронов с рабочим веществом детектора (см. Гамма-излучение , Нейтрон ). Т. о., прохождение всех ядерных частиц через вещество сопровождается образованием свободных электронов, ионов, возникновением световых вспышек ( сцинтилляций ), а также химическими и тепловыми эффектами. В результате этого излучения могут быть зарегистрированы по появлению электрических сигналов (тока или импульсов напряжения) на выходе Д. я. и. либо по почернению фотоэмульсии и др. Электрические сигналы обычно невелики и требуют усиления (см. Ядерная электроника ). Мерой интенсивности потока ядерных частиц является сила тока на выходе Д. я. и., средняя частота следования электрических импульсов, степень почернения фотоэмульсии и т.д.
Важной характеристикой Д. я. и., регистрирующих отдельные частицы, является их эффективность — вероятность регистрации частицы при попадании её в рабочий объём Д. я. и. Эффективность определяется конструкцией Д. я. и. и свойствами рабочего вещества. Для заряженных частиц (за исключением очень медленных) она близка к 1; эффективность регистрации нейтронов и g-квантов обычно меньше 1 и зависит от их энергии. Нередко необходимо, чтобы Д. я. и. был чувствителен только к частицам одного вида (например, нейтронный детектор не должен регистрировать g-кванты).
Простейшим Д. я. и. является ионизационная камера . Она представляет собой помещённый в герметическую камеру заряженный электрический конденсатор, заполненный газом. Если в камеру влетает заряженная частица, то в электрической цепи, связанной с электродами камеры, возникает ток, обусловленный ионизацией атомов газа; сила тока является мерой интенсивности потока частиц. Камеры используются также и в режиме регистрации импульса напряжения, вызываемого отдельной частицей; величина импульса пропорциональна энергии, потерянной частицей в газе камеры. Ионизационные камеры регистрируют все виды ядерных излучений, но их конструкция и состав газа зависят от типа регистрируемого излучения.
При увеличении разности потенциалов между электродами камеры электроны, возникающие в рабочем объёме камеры, при своём движении к электроду приобретают энергию, достаточную для вторичной ионизации нейтральных молекул газа. Благодаря этому импульс напряжения на выходе возрастает и его легче регистрировать. На описанном принципе основана работа пропорционального счётчика , применяемого для измерения интенсивности потока и энергии частиц и квантов.
Интервал:
Закладка: