БСЭ - Большая Советская энциклопедия (ГЕ)

Тут можно читать онлайн БСЭ - Большая Советская энциклопедия (ГЕ) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская энциклопедия (ГЕ)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ - Большая Советская энциклопедия (ГЕ) краткое содержание

Большая Советская энциклопедия (ГЕ) - описание и краткое содержание, автор БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская энциклопедия (ГЕ) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская энциклопедия (ГЕ) - читать книгу онлайн бесплатно, автор БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В самой математике положение и роль Г. определяются прежде всего тем, что через неё в математику вводилась непрерывность. Математика как наука о формах действительности сталкивается прежде всего с двумя общими формами: дискретностью и непрерывностью. Счёт отдельных (дискретных) предметов даёт арифметику, пространств. непрерывность изучает Г. Одним из основных противоречий, движущих развитие математики, является столкновение дискретного и непрерывного. Уже деление непрерывных величин на части и измерение представляют сопоставление дискретного и непрерывного: например, масштаб откладывается вдоль измеряемого отрезка отдельными шагами. Противоречие выявилось с. особой ясностью, когда в Древней Греции (вероятно, в 5 в. до н. э.) была открыта несоизмеримость стороны и диагонали квадрата: длина диагонали квадрата со стороной 1 не выражалась никаким числом, т.к. понятия иррационального числа не существовало. Потребовалось обобщение понятия числа — создание понятия иррационального числа (что было сделано лишь много позже в Индии). Общая же теория иррациональных чисел была создана лишь в 70-х гг. 19 в. Прямая (а вместе с нею и всякая фигура) стала рассматриваться как множество точек. Теперь эта точка зрения является господствующей. Однако затруднения теории множеств показали её ограниченность. Противоречие дискретного и непрерывного не может быть полностью снято.

Общая роль Г. в математике состоит также в том, что с нею связано идущее от пространственных представлений точное синтетическое мышление, часто позволяющее охватить в целом то, что достигается анализом и выкладками лишь через длинную цепь шагов. Так, Г. характеризуется не только своим предметом, но и методом, идущим от наглядных представлений и оказывающимся плодотворным в решении многих проблем др. областей математики. В свою очередь, Г. широко использует их методы. Т. о., одна и та же математическая проблема может сплошь и рядом трактоваться либо аналитически, либо геометрически, или в соединении обоих методов.

В известном смысле, почти всю математику можно рассматривать как развивающуюся из взаимодействия алгебры (первоначально арифметики) и Г., а в смысле метода — из сочетания выкладок и геометрических представлений. Это видно уже в понятии совокупности всех вещественных чисел как числовой прямой, соединяющей арифметические свойства чисел с непрерывностью. Вот некоторые основные моменты влияния Г. в математике.

1) В возникновении и развитии анализа Г. наряду с механикой имела решающее значение. Интегрирование происходит от нахождения площадей и объемов, начатого ещё древними учёными, причём площадь и объём как величины считались определёнными; никакое аналитическое определение интеграла не давалось до 1-й половины 19 в. Проведение касательных было одной из задач, породивших дифференцирование. Графическое представление функций сыграло важную роль в выработке понятий анализа и сохраняет своё значение. В самой терминологии анализа виден геометрический источник его понятий, как, например, в терминах: «точка разрыва», «область изменения переменной» и т.п. Первый курс анализа, написанный в 1696 Г. Лопиталем , назывался: «Анализ бесконечно малых для понимания кривых линий». Теория дифференциальных уравнений в большей части трактуется геометрически (интегральные кривые и т.п.). Вариационное исчисление возникло и развивается в большой мере на задачах Г., и её понятия играют в нём важную роль.

2) Комплексные числа окончательно утвердились в математике на рубеже 18—19 вв. только вследствие сопоставления их с точками плоскости, т. е. путём построения «комплексной плоскости». В теории функций комплексного переменного геометрическими методам отводится существенная роль. Само понятие аналитической функции w = f ( z ) комплексного переменного может быть определено чисто геометрически: такая функция есть конформное отображение плоскости z (или области плоскости z ) в плоскость w . Понятия и методы римановой Г. находят применение в теории функций нескольких комплексных переменных.

3) Основная идея функционального анализа состоит в том, что функции данного класса (например, все непрерывные функции, заданные на отрезке [0,1]) рассматриваются как точки «функционального пространства», причём отношения между функциями истолковываются как геометрические отношения между соответствующими точками (например, сходимость функций истолковывается как сходимость точек, максимум абсолютной величины разности функций — как расстояние, и т.п.). Тогда многие вопросы анализа получают геометрическое освещение, оказывающееся во многих случаях очень плодотворным. Вообще, представление тех или иных математических объектов (функций, фигур и др.) как точек некоторого пространства с соответствующим геометрическим толкованием отношений этих объектов является одной из наиболее общих и плодотворных идей современной математики, проникшей почти во все её разделы.

4) Г. оказывает влияние на алгебру и даже на арифметику — теорию чисел. В алгебре используют, например, понятие векторного пространства. В теории чисел создано геометрическое направление, позволяющее решать многие задачи, едва поддающиеся вычислительному методу. В свою очередь нужно отметить также графические методы расчётов (см. Номография ) и геометрические методы современной теории вычислений и вычислительных машин.

5) Логическое усовершенствование и анализ аксиоматики Г. играли определяющую роль в выработке абстрактной формы аксиоматического метода с его полным отвлечением от природы объектов и отношений, фигурирующих в аксиоматизируемой теории. На том же материале вырабатывались понятия непротиворечивости, полноты и независимости аксиом.

В целом взаимопроникновение Г. и др. областей математики столь тесно, что часто границы оказываются условными и связанными лишь с традицией. Почти или вовсе не связанными с Г. остаются лишь такие разделы, как абстрактная алгебра, математическая логика и некоторые др.

Лит.: Основные классические работы.Евклид, Начала, пер. с греч., кн. 1—15, М. — Л.,1948—50; Декарт Р., Геометрия, пер. с латин., М. — Л., 1938; Монж Г., Приложения анализа к геометрии, пер. с франц., М. — Л., 1936; Ponselet J. V., Traite des proprietes projectives des figures, Metz — Р., 1822; Гаусс К. Ф., Общие исследования о кривых поверхностях, пер. с нем., в сборнике: Об основаниях геометрии, М., 1956; Лобачевский Н. И., Полн. собр. соч., т. 1—3, М. — Л., 1946—51; Больаи Я., Appendix. Приложение,..., пер. с латин., М. — Л., 1950; Риман Б., О гипотезах, лежащих в основаниях геометрии, пер. с нем., в сборнике: Об основаниях геометрии, М., 1956; Клейн Ф., Сравнительное обозрение новейших геометрических исследований («Эрлангенская программа»), там же; Картан Э., Группы голономии обобщенных пространств, пер. с франц., в кн.: VIII-й Международный конкурс на соискание премии имени Николая Ивановича Лобачевского (1937 год), Казань, 1940; Гильберт Д., Основания геометрии, пер. с нем., М. — Л., 1948.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


БСЭ читать все книги автора по порядку

БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская энциклопедия (ГЕ) отзывы


Отзывы читателей о книге Большая Советская энциклопедия (ГЕ), автор: БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x