Д Самин - 100 великих научных открытий
- Название:100 великих научных открытий
- Автор:
- Жанр:
- Издательство:Вече
- Год:2002
- Город:Москва
- ISBN:978-5-9533-2748-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Д Самин - 100 великих научных открытий краткое содержание
В пору становления науки ею занимались лишь преданные одиночки, а полученные ими результаты долгое время не считались обязательными для всех. Но именно научный метод преобразовал наш мир, и именно на основе успехов этого метода наука дала человеку власть над природой. И как бы ни развивалось человечество, оно всегда будет пользоваться плодами великих научных открытий.
Новая книга из известной серии «100 великих» представляет захватывающую галерею триумфов человеческого разума: от закона Архимеда, великих прозрений Пифагора, догматов Аристотеля и Галена до квантовой механики, концепции «Большого взрыва» и теории прибавочной стоимости.
100 великих научных открытий - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Появление матричной механики Гейзенберга физики встретили с огромным облегчением: «Механика Гейзенберга снова вернула мне радость жизни и надежду. Хотя она и не дает решения загадки, но я верю, что теперь снова можно продвигаться вперед», — писал Паули 9 октября 1925 года.
Свою веру он вскоре сам же и оправдал. Применив новую механику к атому водорода, он получил те же формулы, что и Нильс Бор на основе своих постулатов. Конечно, при этом возникли новые трудности, однако это уже были трудности роста, а не безнадежность тупика.
ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ
Принцип, который очень точно и емко Бор назвал дополнительностью, — одна из самых глубоких философских и естественно-научных идей настоящего времени. С ним можно сравнить лишь такие идеи, как принцип относительности или представление о физическом поле.
«За годы, предшествующие выступлению Н. Бора в Комо, имели место многочисленные дискуссии о физической интерпретации квантовой теории, — пишет У.И. Франкфурт. — Суть квантовой теории — в постулате, согласно которому каждому атомному процессу свойственна прерывность, чуждая классической теории. Квантовая теория признает в качестве одного из своих основных положений принципиальную ограниченность классических представлений при их применении к атомным явлениям, чуждую классической физике, но в то же время интерпретация эмпирического материала основывается главным образом на применении классических понятий. Из-за этого при формулировке квантовой теории возникают существенные трудности. Классическая теория предполагает, что физическое явление можно рассматривать, не оказывая на него принципиально неустранимого влияния».
Для доклада на Международном физическом конгрессе в Комо «Квантовый постулат и новейшее развитие атомной теории» ввиду важности обсуждавшихся проблем Бору была предоставлена четырехкратная норма времени. Дискуссия по его докладу заняла все оставшееся время конгресса.
«…Открытие универсального кванта действия, — говорил Нильс Бор, — привело к необходимости дальнейшего анализа проблемы наблюдения. Из этого открытия следует, что весь способ описания, характерный для классической физики (включая теорию относительности), остается применимым лишь до тех пор, пока все входящие в описание величины размерности действия велики по сравнению с квантом действия Планка. Если это условие не выполняется, как это имеет место в области явлений атомной физики, то вступают в силу закономерности особого рода, которые не могут быть включены в рамки причинного описания… Этот результат, первоначально казавшийся парадоксальным, находит, однако, свое объяснение в том, что в указанной области нельзя более провести четкую грань между самостоятельным поведением физического объекта и его взаимодействием с другими телами, используемыми в качестве измерительных приборов; такое взаимодействие с необходимостью возникает в процессе наблюдения и не может быть непосредственно учтено по самому смыслу понятия измерения…
Это обстоятельство фактически означает возникновение совершенно новой ситуации в физике в отношении анализа и синтеза опытных данных. Она заставляет нас заменить классический идеал причинности некоторым более общим принципом, называемым обычно „дополнительностью“. Получаемые нами с помощью различных измерительных приборов сведения о поведении исследуемых объектов, кажущиеся несовместимыми, в действительности не могут быть непосредственно связаны друг с другом обычным образом, а должны рассматриваться как дополняющие друг друга. Таким образом, в частности, объясняется безуспешность всякой попытки последовательно проанализировать „индивидуальность“ отдельного атомного процесса, которую, казалось бы, символизирует квант действия, с помощью разделения такого процесса на отдельные части. Это связано с тем, что если мы хотим зафиксировать непосредственным наблюдением какой-либо момент в ходе процесса, то нам необходимо для этого воспользоваться измерительным прибором, применение которого не может быть согласовано с закономерностями течения этого процесса. Между постулатом теории относительности и принципом дополнительности при всем их различии можно усмотреть определенную формальную аналогию. Она заключается в том, что подобно тому, как в теории относительности оказываются эквивалентными закономерности, имеющие различную форму в разных системах отсчета вследствие конечности скорости света, так в принципе дополнительности закономерности, изучаемые с помощью различных измерительных приборов и кажущиеся взаимно противоречащими вследствие конечности кванта действия, оказываются логически совместимыми.
Чтобы дать по возможности ясную картину сложившейся в атомной физике ситуации, совершенно новой с точки зрения теории познания, мы хотели бы здесь прежде всего рассмотреть несколько подробнее такие измерения, целью которых является контроль за пространственно-временным ходом какого-либо физического процесса. Такой контроль в конечном счете всегда сводится к установлению некоторого числа однозначных связей поведения объекта с масштабами и часами, определяющими используемую нами пространственно-временную систему отсчета. Мы лишь тогда можем говорить о самостоятельном, не зависимом от условий наблюдения поведении объекта исследования в пространстве и во времени, когда при описании всех условий, существенных для рассматриваемого процесса, можем полностью пренебречь взаимодействием объекта с измерительным прибором, которое неизбежно возникает при установлении упомянутых связей. Если же, как это имеет место в квантовой области, такое взаимодействие само оказывает большое влияние на ход изучаемого явления, ситуация полностью меняется, и мы, в частности, должны отказаться от характерной для классического описания связи между пространственно-временными характеристиками события и всеобщими динамическими законами сохранения. Это вытекает из того, что использование масштабов и часов для установления системы отсчета по определению исключает возможность учета величин импульса и энергии, передаваемых измерительному прибору в ходе рассматриваемого явления. Точно так же и наоборот, квантовые законы, в формулировке которых существенно используются понятия импульса или энергии, могут быть проверены лишь в таких экспериментальных условиях, когда исключается строгий контроль за пространственно-временным поведением объекта».
Согласно соотношению неопределенностей Гейзенберга, нельзя в одном и том же опыте определить обе характеристики атомного объекта — координату и импульс.
Читать дальшеИнтервал:
Закладка: