БСЭ БСЭ - Большая Советская Энциклопедия (БЕ)
- Название:Большая Советская Энциклопедия (БЕ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (БЕ) краткое содержание
Большая Советская Энциклопедия (БЕ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Энергия Б.-р. ныне известных изотопов лежит в пределах от
периоды полураспада заключены в широком интервале от 1,3 · 10 -2 сек ( 12N) до ~ 2 10 13лет (природный радиоактивный изотоп 180W).
В дальнейшем изучение Б.-р. неоднократно приводило физиков к крушению старых представлений. Было установлено, что Б.-р. управляют силы совершенно новой природы. Несмотря на длительный период, прошедший со времени открытия Б.-р., природа взаимодействия, обусловливающего Б.-р., исследована далеко не полностью. Это взаимодействие назвали «слабым», т.к. оно в 10 12раз слабее ядерного и в 10 9раз слабее электромагнитного (оно превосходит лишь гравитационное взаимодействие; см. Слабые взаимодействия ). Слабое взаимодействие присуще всем элементарным частицам (кроме фотона). Прошло почти полвека, прежде чем физики обнаружили, что в Б.-р. может нарушаться симметрия между «правым» и «левым». Это несохранение пространственной чётности было приписано свойствам слабых взаимодействий.
Изучение Б.-р. имело и ещё одну важную сторону. Время жизни ядра относительно Б.-р. и форма спектра b-частиц зависят от тех состояний, в которых находятся внутри ядра исходный нуклон и нуклон-продукт. Поэтому изучение Б.-р., помимо информации о природе и свойствах слабых взаимодействий, значительно пополнило представления о структуре атомных ядер.
Вероятность Б.-р. существенно зависит от того, насколько близки друг к другу состояния нуклонов в начальном и конечном ядрах. Если состояние нуклона не меняется (нуклон как бы остаётся на прежнем месте), то вероятность максимальна и соответствующий переход начального состояния в конечное называется разрешённым. Такие переходы характерны для Б.-р. лёгких ядер. Лёгкие ядра содержат почти одинаковое число нейтронов и протонов. У более тяжёлых ядер число нейтронов больше числа протонов. Состояния нуклонов разного сорта существенно отличны между собой. Это затрудняет Б.-р.; появляются переходы, при которых Б.-р. происходит с малой вероятностью. Переход затрудняется также из-за необходимости изменения спина ядра. Такие переходы называются запрещёнными. Характер перехода сказывается и на форме энергетического спектра b-частиц.
Экспериментальное исследование энергетического распределения электронов, испускаемых b-радиоактивными ядрами (бета-спектра), производится с помощью бета-спектрометров . Примеры b-спектров приведены на рис. 1 и рис. 2 .
Лит.: Альфа-, бета- и гамма-спектроскопия, под ред. К. Зигбана, пер. с англ., в. 4, М., 1969, гл. 22—24; Экспериментальная ядерная физика, под ред. Э. Сегре, пер. с англ., т. 3, М., 1961.
Е. М. Лейкин.

Бета-спектр RaE (пример b -спектра тяжёлого элемента).

Бета-спектр нейтрона. На оси абсцисс отложена кинетич. энергия электронов Е в кэв , на оси ординат — число электронов N (Е) в относительных единицах (вертикальными чёрточками обозначены пределы ошибок измерений электронов с данной энергиией).
Бета-спектрометр
Бе'та-спектро'метр, прибор, служащий для анализа бета-спектров (см. Бета-распад ). Б.-с. применяют также для исследования энергетического спектра g-лучей по создаваемым ими в веществе вторичным электронам (см. Гамма-спектрометр ).
Основными характеристиками Б.-с. являются светосила и разрешающая способность. Под светосилой понимают отношение числа электронов (или позитронов), которое используется для анализа, к полному числу частиц, испускаемых радиоактивным источником. Светосила Б.-с. зависит от их конструкции и обычно составляет от нескольких десятых процента до нескольких десятков процентов. Разрешающей способностью Б.-с. называется наименьшее различие в энергии (или, чаще, в импульсе) электронов, которое может быть замечено прибором. Разрешающая способность прецизионных Б.-с. достигает 0,01%. Как правило, приборы с лучшей разрешающей способностью обладают меньшей светосилой.
Различают Б.-с., измеряющие энергию электронов по их воздействию на вещество, и Б.-с., действие которых основано на пространственном разделении электронов и позитронов, имеющих различную энергию. К приборам первого типа относятся Б.-с., основанные на ионизации, возникающей в веществе при торможении электронов (см. Сцинтилляционный спектрометр, Ионизационная камера ); приборы этого типа обладают большой светосилой, но не дают возможности измерять энергию электронов с точностью, большей чем несколько процентов (или даже несколько десятков процентов). К приборам второго типа принадлежат Б.-с., в которых используются магнитные или электрические (для медленных электронов) поля. Обычно под Б.-с. понимают приборы второго типа.
Наиболее просты по устройству (и дают наилучшее разрешение) Б.-с. с поперечным магнитным полем (предложены польским физиком Я. Данышем в 1912). В этих Б.-с. траектории электронов перпендикулярны силовым линиям поля. В однородном поперечном поле электроны движутся по окружностям ( рис. 1 ), радиусы которых растут с импульсом р в соответствии с формулой:
pc = 300 Br, (1)
где рс — произведение импульса электрона на скорость света с в эв ; В — индукция магнитного поля в гс ; r — радиус окружности в см . При энергиях электронов в несколько Мэв размеры Б.-с. невелики; он умещается на лабораторном столе. Детектором электронов может служить фотопластинка ( рис. 1 ). В этом случае одновременно регистрируется целый участок энергетического спектра. При использовании в качестве детекторов различного вида счётчиков частиц (например, Гейгера — Мюллера счётчика ) магнитное поле спектрометра плавно изменяют, подводя к детектору электроны с разными импульсами р в соответствии с формулой (1) ( рис. 2 ). Траектории электронов в Б.-с. проходят внутри вакуумной камеры (вакуум порядка 10 -1— 10 -3 мм рт. ст. ).
Существенным свойством Б.-с. с однородным поперечным магнитным полем является их способность фокусировать частицы, вылетевшие из источника в разных направлениях в некотором интервале углов. После поворота на 180° траектории частиц, вылетевших из источника почти перпендикулярно к линии, соединяющей источник и детектор, сходятся у детектора ( рис. 3 ).
При движении электронов в однородном магнитном поле составляющая их скорости, параллельная силовым линиям поля, сохраняет свою величину. Если начальные скорости электронов не перпендикулярны полю, их траектории — винтовые линии. Проекция траекторий на плоскость, перпендикулярную силовым линиям, является окружностью. В формулу (1) в этом случае входит составляющая импульса, перпендикулярная полю. Т. о., в однородном магнитном поле не происходит фокусировки в направлении поля. Добиться двойной (пространственной) фокусировки частиц удаётся ценой отказа от однородности поля. Для этой цели применяются Б.-с. (предложены Н. Свартхольмом и К. Сигбаном, Швеция, 1946), у которых магнитная индукция В спадает по радиусу r по формуле:
Читать дальшеИнтервал:
Закладка: