БСЭ БСЭ - Большая Советская Энциклопедия (ГА)
- Название:Большая Советская Энциклопедия (ГА)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ГА) краткое содержание
Большая Советская Энциклопедия (ГА) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Исследования в области Г.-а. позволили обнаружить вплоть до 100 Мэв равномерный (изотропный) космический фон. Обнаружено также излучение, приходящее от центра Галактики и от 2 дискретных источников излучения: Крабовидной туманности (спектр измерен до 0,5 Мэв ) и источника в созвездии Скорпиона (до 50 Мэв ) . Источник в Крабовидной туманности является остатком сверхновой звезды, вспыхнувшей в 1054, а источник в Скорпионе — остатком вспышки новой звезды. Природа изотропного фона, а также излучения от центра Галактики полностью ещё не выяснена. Ведутся поиски аннигиляционного излучения с энергией 511 кэв, которое возникает при аннигиляции пары электрон-позитрон (см. Аннигиляция и рождение пар ) . Обнаружение такого излучения может явиться указанием на существование во Вселенной антивещества. Можно предполагать, что наблюдения с гамма-телескопами большой площади позволят продолжить исследования спектра дискретных источников рентгеновского излучения в область больше 10 кэв. Исследования в области Г.-а. важны для космологии (наблюдения горячего межгалактического газа), для выяснения природы активности ядер сейфертовских галактик, квазаров, нейтронных звёзд, дискретных источников галактического и внегалактического рентгеновского и гамма-излучения. Работы по Г.-а. ведутся в СССР, США, а также в Японии.
В. Г. Курт.

Пропускание земной атмосферы в области рентгеновского и гамма-излучения. По оси ординат отложена высота, до которой проникает половина падающего излучения.
Гамма-глобулины
Га'мма-глобули'ны,фракция глобулинов кровяной плазмы, содержащая большинство антител. По сравнению с др. белковыми фракциями крови Г.-г. обладают наименьшей электрофоретической подвижностью. Получают Г.-г. из донорской или плацентарной крови. Т. н. специфические Г.-г. с особенно высоким содержанием антител против определенных возбудителей выделяют из сывороток человека или животных, иммунизированных соответствующими антигенами. Например, противококлюшный Г.-г. изготовляют из сыворотки людей, гипериммунизированных коклюшной вакциной; антирабические Г.-г.—из сыворотки лошадей, гипериммунизированных против бешенства. Концентрированные растворы Г.-г. содержат антител значительно больше, чем исходные сыворотки. В СССР Г.-г. выпускают в виде 10%-ного раствора (вводят внутримышечно). Применяют Г.-г. для профилактики и лечения инфекционных заболеваний главным образом у детей (корь, коклюш, полиомиелит, эпидемический гепатит и др.). Г.-г. обладает также некоторым неспецифическим (стимулирующим) действием, поэтому его назначают детям с хроническими воспалительными процессами, упадком питания и т. п. См. также Иммуноглобулины.
Гамма-дефектоскопия
Га'мма-дефектоскопи'я,метод обнаружения внутренних дефектов в изделиях при просвечивании их гамма-лучами; см. Дефектоскопия.
Гамма-излучение
Га'мма-излуче'ние,коротковолновое электромагнитное излучение. На шкале электромагнитных волн оно граничит с жёстким рентгеновским излучением, занимая область более высоких частот. Г.-и. обладает чрезвычайно малой длиной волны ( l £ 10 -8 см ) и вследствие этого ярко выраженными корпускулярными свойствами, т. е. ведёт себя подобно потоку частиц — гамма-квантов, или фотонов, с энергией hv ( v — частота излучения, h — Планка постоянная ) .
Г.-и. возникает при распадах радиоактивных ядер, элементарных частиц, при аннигиляции пар частица-античастица, а также при прохождении быстрых заряженных частиц через вещество.
Г.-и., сопровождающее распад радиоактивных ядер, испускается при переходах ядра из более возбуждённого энергетического состояния в менее возбуждённое или в основное. Энергия g -кванта равна разности энергий DE состоянии, между которыми происходит переход ( рис. 1 ). Испускание ядром g -кванта не влечёт за собой изменения атомного номера или массового числа, в отличие от др. видов радиоактивных превращений (см. Альфа-распад, Бета-распад ) . Ширина линий Г.-и. обычно чрезвычайно мала (~10 -2 эв ). Поскольку расстояние между уровнями (от нескольких кэв до нескольких Мэв ) во много раз больше ширины линий, спектр Г.-и. является линейчатым, т. е. состоит из ряда дискретных линий. Изучение спектров Г.-и. позволяет установить энергии возбуждённых состояний ядер (см. Ядерная спектроскопия, Ядро атомное ) .
Гамма-кванты с большими энергиями испускаются при распадах некоторых элементарных частиц. Так, при распаде покоящегося p° -мезона возникает Г.-и. с энергией ~70 Мэв. Г.-и. от распада элементарных частиц также образует линейчатый спектр. Однако испытывающие распад элементарные частицы часто движутся со скоростями, сравнимыми со скоростью света с. Вследствие этого возникает доплеровское уширение линии (см. Доплера эффект ) и спектр Г.-и. оказывается размытым в широком интервале энергии (см. Элементарные частицы ) .
Г.-и., образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением в кулоновском поле атомных ядер вещества. Тормозное Г.-и., так же как и тормозное рентгеновское излучение, характеризуется сплошным спектром, верхняя граница которого совпадает с энергией заряженной частицы, например электрона. В ускорителях заряженных частиц получают тормозное Г.-и. с максимальной энергией до нескольких десятков Гэв (см. Тормозное излучение ) .
В межзвёздном пространстве Г.-и. может возникать в результате соударений квантов более мягкого длинноволнового электромагнитного излучения, например света, с электронами, ускоренными магнитными полями космических объектов. При этом быстрый электрон передаёт свою энергию электромагнитному излучению и видимый свет превращается в более жёсткое Г.-и. (см. Гамма-астрономия ) .
Аналогичное явление может иметь место в земных условиях при столкновении электронов большой энергии, получаемых на ускорителях, с фотонами видимого света в интенсивных пучках света, создаваемых лазерами. Электрон передаёт энергию световому фотону, который превращается в g -квант. Т. о., можно на практике превращать отдельные фотоны света в кванты Г.-и. высокой энергии.
Г.-и. обладает большой проникающей способностью, т. е. может проникать сквозь большие толщи вещества без заметного ослабления. Основные процессы, происходящие при взаимодействии Г.-и. с веществом, — фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (комптон-эффект) и образование пар электрон-позитрон. При фотоэффекте происходит поглощение g -кванта одним из электронов атома, причём энергия g -кванта преобразуется (за вычетом энергии связи электрона в атоме) в кинетическую энергию электрона, вылетающего за пределы атома. Вероятность фотоэффекта прямо пропорциональна 5-й степени атомного номера элемента и обратно пропорциональна 3-й степени энергии Г.-и. (см. Фотоэффект ) . Т. о., фотоэффект преобладает в области малых энергий g -квантов (£ 100 кэв) на тяжёлых элементах (Pb, U).
Читать дальшеИнтервал:
Закладка: