БСЭ БСЭ - Большая Советская Энциклопедия (ГА)
- Название:Большая Советская Энциклопедия (ГА)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ГА) краткое содержание
Большая Советская Энциклопедия (ГА) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Для получения генераторных газов применяют различные виды окислителей (дутья): воздух; смесь водяного пара с воздухом или кислородом; воздух, обогащённый кислородом, и др. Состав дутья подбирается так, чтобы тепла, выделяющегося в экзотермических реакциях, хватило для осуществления всего процесса.
Названия генераторных газов часто определяются составом дутья. Например, воздушный газ образуется при подаче в газогенератор воздуха. Состав воздушного газа, полученного из кокса (объёмных %): 0,6 CO 2, 33,4 CO, 0,9 H 2, 0,5 CH 4, 64,6 N 2; теплота сгорания 4,53 Мдж/м 3(1080 ккал/м 3), выход газа 4,65 м 3 /кг топлива. Состав воздушного газа, полученного при газификации мазута под давлением 1,5 Мн/м 2(15 кгс/см 2) (объёмных %): 3,5 (CO 2+ H 2S), 21,0 CO, 17,5 H 2, 58 N 2; теплота сгорания 5 Мдж/м 3(1200 ккал/м 3), выход газа 6,1 м 3 /кг топлива.
Водяной газ (синтез-газ, технологический газ) образуется при взаимодействии раскалённого топлива с водяным паром. Поскольку реакция получения водяного газа эндотермична, то для накопления необходимого для газификации количества тепла слой топлива в генераторе периодически продувают воздухом (полученный при этом воздушный газ является побочным продуктом). Состав водяного газа из каменноугольного кокса (объёмных %): 37 CO, 50 H 2, 0,5 CH 4, 5,5 N 2, 6,5 CO 2, 0,3 H 2S, 0,2 O 2; теплота сгорания 11,5 Мдж/м 3(2730 ккал/м 3), выход газа 1,5 м 3 /кг топлива. Применяя парокислородное дутьё, водяной газ можно получать непрерывно. Например, при газификации мазута под давлением 3 Мн/м 2(30 кгс/см 2) образуется газ состава (объёмных %): 46,8 CO, 48,8 H 2, 3,8 CO 2, 0,3 CH 4, 0,3 N 2; теплота сгорания 12,3 Мдж/м 3(2940 ккал/м 3).
Смешанный газ (смесь воздушного и водяного газов) получают при Г. т. на паровоздушном дутье. Например, состав смешанного газа из кускового торфа (объёмных %): 8,1 (CO 2+ H 2S), 28 CO, 15 H 2, 3 CH 4, 45,3 N 2, 0,4 C m H n , 0,2 O 2; теплота сгорания 6,9 Мдж/м 3(1660 ккал/м 3), выход газа 1,38 м 3 /кг топлива.
Городской газ из угля получают на парокислородном дутье под давлением до 2—3 Мн/м 2(20—30 кгс/см 2); в этих условиях газ обогащается метаном; например, при газификации бурого угля образуется газ состава (объёмных %): 23,6 CO, 55,7 H 2, 14,3 CH 4, 5,5 N 2, 0,2 (CO 2+ H 2S) и 0,7 C m H n ; теплота сгорания около 16,8 Мдж/м 3(4000 ккал/м 3), выход газа 0,97 м 3 /кг топлива. Городской газ из жидкого топлива получают комбинированием газификации и пиролиза под давлением. Мощность установок по производству газа из твёрдого топлива достигает 80 000 м 3 /час в одном агрегате; из жидкого топлива — до 60 000 м 3 /час . Преобладающая тенденция в развитии техники Г. т. — осуществление процесса под высоким давлением (до 10 Мн/м 2и выше) в агрегатах большой мощности. Степень использования тепла (кпд Г. т.), заключённого в топливе, составляет 70—90%.
Г. т. получила распространение в 19 в. благодаря преимуществам газового топлива перед твёрдым и жидким. Одновременно развивалось производство светильного газа, основанное на процессах термической деструкции топлива без доступа воздуха (сухой перегонки, коксования). При Г. т. в газ переходит вся горючая часть топлива, а при образовании светильного газа — только часть топлива. В 1-й половине20 в. водяной газ производился с целью получения водорода для синтеза аммиака и искусственного жидкого топлива. После 2-й мировой войны 1939—45 интенсивно стали разрабатываться способы газификации жидких топлив под давлением, особенно в районах, удалённых от источников природного газа. В СССР успешно разрабатываются методы получения из высокосернистого котельного топлива (мазута) малосернистого газообразного топлива для электростанций. Благодаря этому резко уменьшаются загрязнение воздушного бассейна сернистым газом, а также коррозия котельного оборудования.
Лит.: Шишаков Н. В., Основы производства горючих газов, М. — Л., 1948; Труды VI международного нефтяного конгресса, в. 2—7, М., 1965; Христианович С. А. [и др.], Способ получения электроэнергии на тепловых электростанциях. Авторское свидетельство № В 1922 (запатентовано в США, Англии и др.).
М. И. Дербаремдикер.
Газификация углей подземная
Газифика'ция у'гле'й подзе'мная,см. Подземная газификация углей .
Газли
Газли',посёлок городского типа в Ромитанском районе Бухарской области Узбекской ССР. Расположен в пустыне Кызылкум, в 106 км к С.-З. от Бухары. 7,8 тыс. жителей (1970). В районе Г. разведано крупное месторождение природного газа, с освоением которого связано возникновение в 1958 посёлка Г.; запасы газа — около 500 млрд. м 3. От месторождения проведены газопроводы на Урал, в Центр Европейской части СССР, Ташкент и др.
Газлифт
Газли'фт(от газ и англ. lift — поднимать), устройство для подъёма капельной жидкости за счёт энергии, содержащейся в смешиваемом с ней сжатом газе. Г. применяют главным образом для подъёма нефти из буровых скважин, используя при этом газ, выходящий из нефтеносных пластов. Известны подъёмники, в которых для подачи жидкости, главным образом воды, используют атмосферный воздух. Такие подъёмники называют эрлифтами или мамут-насосами.
В Г., или эрлифте ( рис. ), сжатый газ или воздух от компрессора подаётся по трубопроводу 3, смешивается с жидкостью, образуя газожидкостную или водо-воздушную эмульсию, которая поднимается по трубе 2. Смешение газа с жидкостью происходит в башмаке 4, соединяющем трубы. На поверхности земли газообразную фазу эмульсии от жидкой отделяет сепаратор 1 . Действие Г. основано на уравновешивании столба газожидкостной эмульсии столбом капельной жидкости на основе закона сообщающихся сосудов. Один из них — буровая скважина или резервуар, а другой — труба, в которой находится газожидкостная смесь.
Для статических условий g жh = g cm(h + H) , где g ж — плотность жидкости, g см — плотность смеси, Н — высота подъёма газожидкостной смеси, h — глубина погружения трубы. При g см< g жh + H > h , т. е. с увеличением заглубления башмака Г. можно получить бо'льшую высоту подъёма жидкости. Рабочий процесс Г. сопровождается явлением увлечения жидкости пузырьками газа или воздуха, которые, поднимаясь вверх, расширяются и увеличивают скорость движения газожидкостной смеси. Оптимальные скорости движения эмульсии в нижней части трубы 3 м/сек, а в верхней 6-8 м/сек.
Г. могут подавать воду на высоту до 200 м и нефть до 1000 м при часовой подаче до 500 м 3. Г. имеют кпд от 15 до 36%. Несмотря на наличие более эффективных технических средств для подъёма жидкости, Г. и в настоящее время имеют применение.
Читать дальшеИнтервал:
Закладка: