БСЭ БСЭ - Большая Советская Энциклопедия (ИГ)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (ИГ) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (ИГ)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.75/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (ИГ) краткое содержание

Большая Советская Энциклопедия (ИГ) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (ИГ) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (ИГ) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В частном случае антагонистических игр принцип осуществимости цели превращается в так называемый принцип максимина (отражающий стремление максимизировать минимальный выигрыш).

Принципы оптимальности (первоначально выбиравшиеся интуитивно) выводятся на основании некоторых заранее задаваемых их свойств, имеющих характер аксиом. Существенно, что различные применяемые в И. т. принципы оптимальности могут противоречить друг другу.

Теоремы существования в И. т. доказываются преимущественно теми же неконструктивными средствами, что и в других разделах математики: при помощи теорем о неподвижной точке, о выделении из бесконечной последовательности сходящейся подпоследовательности и т. п., или же, в весьма узких случаях, путём интуитивного указания вида решения и последующего нахождения решения в этом виде.

Фактическое решение некоторых классов антагонистических игр сводится к решению дифференциальных и интегральных уравнений, а матричных игр — к решению стандартной задачи линейного программирования . Разрабатываются приближённые и численные методы решения игр. Для многих игр оптимальными оказываются так называемые смешанные стратегии, тоесть стратегии, выбираемые случайно (например, по жребию).

И. т., созданная для математического решения задач экономического и социального происхождения, не может в целом сводиться к классическим математическим теориям, созданным для решения физических и технических задач. Однако в различных конкретных вопросах И. т. широко используются весьма разнообразные классические математические методы. Кроме этого, И. т. связана с рядом математических дисциплин внутренним образом. В И. т. систематически и по существу употребляются понятия теории вероятностей. На языке И. т. можно сформулировать большинство задач математической статистики. Необходимость при анализе игры количественного учёта неопределённости предопределяет важность и тем самым связь И. т. с теорией информации и через её посредство — с кибернетикой. Кроме того, И. т., будучи теорией принятия решений, может рассматриваться как существенная составная часть математического аппарата операций исследования .

И. т. применяется в экономике, технике, военном деле и даже в антропологии. Основные трудности практического применения И. т. связаны с экономической и социальной природой моделируемых ею явлений и недостаточным умением составлять такие модели на количественном уровне.

К 70-м гг. 20 в. число публикаций по научным вопросам И. т. достигло многих сотен (в том числе несколько десятков монографий). Курсы по И. т. читаются во многих высших учебных заведениях для студентов математических и экономических специальностей (в СССР — с 1956).

Международные конференции по И. т. проходили в Принстоне (1961), Иерусалиме (1965), Вене (1967) и Беркли (1970). Всесоюзные конференции по И. т. состоялись в Ереване (1968) и Вильнюсе (1971).

Лит.: Нейман Дж. Моргенштерн О., Теория игр и экономическое поведение, пер. с англ., М., 1970; Льюс Р., Райфа Х., Игры и решения, пер. с англ., М., 1961; Карлин С., Математические методы в теории игр, программировании и экономике, пер. с англ., М., 1964; Воробьев Н. Н., Современное состояние теории игр, «Успехи математических наук», 1970, т. 25, № 2(152), с. 80—140; Оуэн Г., Теория игр, пер. с англ., М., 1971; Contributions to the theory of games, v.1—4, Princeton, 1950—59; Advances in game theory, Princeton, 1964.

Н. Н. Воробьев.

Игра (вид деятельности)

Игра',вид непродуктивной деятельности, где мотив лежит не в результате её, а в самом процессе. И. сопровождает человечество на протяжении всей его истории, переплетаясь с магией, культовым поведением, спортом, военными и др. тренировками, искусством, в особенности исполнительскими его формами. И. свойственны и высшим животным. И. изучается историками культуры, этнографами, психологами (в частности, в связи с детской психологией), историками религии, искусствоведами, исследователями спорта и военного дела. В математической игр теории И. определяется как математическая модель конфликтной ситуации. Происхождение И. связывалось с магико-культовыми потребностями или врождёнными биологическими потребностями организма; выводилось из трудовых процессов (Г. В. Плеханов, «Письма без адреса»).

Связь И. с тренировкой и отдыхом одновременно обусловлена её способностью моделировать конфликты, решение которых в практической сфере деятельности или затруднено или невозможно. Поэтому И. является не только физической тренировкой, но и средством психологической подготовки к будущим жизненным ситуациям. В качестве абстрактной модели конфликта И. легко превращается в форму выражения социальных противоречий (превращение в средневековой Византии «болельщиков» на ипподроме в политические партии, детские игры как модели социальных конфликтов «взрослого» мира).

Особая психическая установка играющего который одновременно и верит и не верит в реальность разыгрываемого конфликта, двуплановость его поведения роднит И. с искусством. Вопрос о соотношении И. и искусства был поставлен И. Кантом и получил философско-антропологическое обоснование у Ф. Шиллера, видевшего в И. специфически человеческую форму жизнедеятельности по преимуществу «...человек играет только тогда, когда он в полном значении слова человек, и он бывает вполне человеком лишь тогда, когда играет» (Собрание соч., т. 6, М., 1957, с. 302). Генетическая связь искусства и И. отмечалась также в позитивистских концепциях происхождения искусства (например, в теории синкретического первобытного искусства и происхождения искусства из обряда и «действа» А. Н. Веселовского ). И игра, и искусство, преследуя цели овладения миром, обладают общим свойством — решение предлагается не в практической, а в условной, знаковой сфере, которая в дальнейшем может быть использована в качестве модели практического поведения. Однако между И. и искусством имеется существенное отличие: И. представляет собой овладение умением, тренировку, моделирование деятельности, отличительным свойством И. является наличие системы правил поведения.

Ю. М. Лотман.

В психологии первая фундаментальная концепция И. была развита немецким философом и психологом К. Гросом (1899): в И. животных он видел предварительное приспособление («предупражнение») инстинктов к условиям будущей жизни. До него английский философ Г. Спенсер высказал взгляд на И. как проявление «избытка сил». Существенной поправкой к учению Гроса явилась теория австрийского психолога К. Бюлера о «функциональном удовольствии» как внутренней субъективной причине И. С противоположной Гросу теорией И. выступил голландский зоопсихолог Ф. Бёйтендейк, считая, что в основе И. лежат не инстинкты, а более общие изначальные влечения, находящиеся за инстинктами (влечение к освобождению, влечение к слиянию с окружающим и влечение к повторению). В психоаналитической концепции австрийского врача З. Фрейда И. рассматриваются как реализация вытесненных из жизни желаний.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (ИГ) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (ИГ), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x