БСЭ БСЭ - Большая Советская Энциклопедия (ЗН)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (ЗН) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (ЗН)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.63/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (ЗН) краткое содержание

Большая Советская Энциклопедия (ЗН) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (ЗН) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (ЗН) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Начатки буквенного изображения и исчисления возникают в позднеэллинистическую эпоху в результате освобождения алгебры от геометрической формы. Диофант (вероятно, 3 в.) записывал неизвестную ( х ) и её степени следующими знаками:

от греческого термина dunamiV dynamis сила обозначавшего квадрат - фото 6

[ картинка 7— от греческого термина dunamiV (dynamis — сила), обозначавшего квадрат неизвестной, картинка 8 — от греческого cuboV (k_ybos) — куб]. Справа от неизвестной или её степеней Диофант писал коэффициенты, например 3х 5изображалось

картинка 9

(где картинка 10 = 3). При сложении Диофант приписывал слагаемые друг к другу, для вычитания употреблял специальный знак картинка 11; равенство Диофант обозначал буквой i [от греческого isoV (isos) — равный]. Например, уравнение

( x 3+ 8 x ) — (5 x 2+ 1) = х

у Диофанта записалось бы так:

Большая Советская Энциклопедия ЗН - изображение 12

(здесь Большая Советская Энциклопедия ЗН - изображение 13

означает, что единица картинка 14 не имеет множителя в виде степени неизвестного).

Несколько веков спустя индийцы ввели различные З. м. для нескольких неизвестных (сокращения наименований цветов, обозначавших неизвестные), квадрата, квадратного корня, вычитаемого числа. Так, уравнение

3 х 2+ 10 x — 8 = x 2+ 1

в записи Брахмагупты (7 в.) имело бы вид:

йа ва 3 йа 10 ру 8

йа ва 1 йа 0 ру 1

(йа — от йават — тават — неизвестное, ва — от варга — квадратное число, ру — от рупа — монета рупия — свободный член, точка над числом означает вычитаемое число).

Создание современной алгебраической символики относится к 14—17 вв.; оно определялось успехами практической арифметики и учения об уравнениях. В различных странах стихийно появляются З. м. для некоторых действий и для степеней неизвестной величины. Проходят многие десятилетия и даже века, прежде чем вырабатывается тот или иной удобный символ. Так, в конце 15 и. Н. Шюке и Л. Пачоли употребляли знаки сложения и вычитания

картинка 15

(от лат. plus и minus), немецкие математики ввели современные + (вероятно, сокращение лат. et) и —. Ещё в 17 в. можно насчитать около десятка З. м. для действия умножения.

Различны были и З. м. неизвестной и её степеней. В 16 — начале 17 вв. конкурировало более десяти обозначений для одного только квадрата неизвестной, например се (от census — латинский термин, служивший переводом греческого dunamiV, Q (от quadratum), картинка 16, A (2), Aii aa a 2 и др Так уравнение x 3 5 x 12 имело бы у итальянского - фото 17, Aii, aa , a 2 и др. Так, уравнение

x 3+ 5 x = 12

имело бы у итальянского математика Дж. Кардано (1545) вид:

Большая Советская Энциклопедия ЗН - изображение 18

у немецкого математика М. Штифеля (1544):

Большая Советская Энциклопедия ЗН - изображение 19

у итальянского математика Р. Бомбелли (1572):

Большая Советская Энциклопедия ЗН - изображение 20

французского математика Ф. Виета (1591):

Большая Советская Энциклопедия ЗН - изображение 21

у английского математика Т. Гарриота (1631):

Большая Советская Энциклопедия ЗН - изображение 22

В 16 и начале 17 вв. входят в употребление знаки равенства и скобки: квадратные (Р. Бомбелли , 1550), круглые (Н. Тарталья, 1556), фигурные (Ф. Виет, 1593). В 16 в. современный вид принимает запись дробей.

Значительным шагом вперёд в развитии математической символики явилось введение Виетом (1591) З. м. для произвольных постоянных величин в виде прописных согласных букв латинского алфавита В, D, что дало ему возможность впервые записывать алгебраические уравнения с произвольными коэффициентами и оперировать ими. Неизвестные Виет изображал гласными прописными буквами А, Е,... Например, запись Виета

cubus куб planus плоский т е В двумерная величина solidus - фото 23

[cubus — куб, planus — плоский, т. е. В — двумерная величина; solidus — телесный (трёхмерный), размерность отмечалась для того, чтобы все члены были однородны] в наших символах выглядит так:

x 3 + 3 bx = d.

Виет явился творцом алгебраических формул. Р. Декарт (1637) придал знакам алгебры современный вид, обозначая неизвестные последними буквами лат. алфавита х, у, z, а произвольные данные величины — начальными буквами а, b, с. Ему же принадлежит нынешняя запись степени. Обозначения Декарта обладали большим преимуществом по сравнению со всеми предыдущими. Поэтому они скоро получили всеобщее признание.

Дальнейшее развитие З. м. было тесно связано с созданием анализа бесконечно малых, для разработки символики которого основа была уже в большой мере подготовлена в алгебре.

Даты возникновения некоторых математических знаков

знак значение Кто ввёл Когда введён
Знаки индивидуальных объектов
¥ бесконечность Дж. Валлис 1655
e' основание натуральных логарифмов Л. Эйлер 1736
p отношение длины окружности к диаметру У. Джонс Л. Эйлер 1706 1736
i корень квадратный из -1 Л. Эйлер 1777 (в печати 1794)
i j k единичные векторы, орты У. Гамильтон 1853
П (а) угол параллельности Н.И. Лобачевский 1835
Знаки переменных объектов
x,y, z' неизвестные или переменные величины Р. Декарт 1637
r вектор О. Коши 1853
Знаки индивидуальных операций
+ сложение немецкие математики Конец 15 в.
–' вычитание
´ умножение У. Оутред 1631
× умножение Г. Лейбниц 1698
: деление Г. Лейбниц 1684
a 2, a 3,…, a n степени Р. Декарт 1637
И. Ньютон 1676
картинка 24 корни К. Рудольф 1525
А. Жирар 1629
Log логарифм И. Кеплер 1624
log Б. Кавальери 1632
sin синус Л. Эйлер 1748
cos косинус
tg тангенс Л. Эйлер 1753
arc.sin арксинус Ж. Лагранж 1772
Sh гиперболический синус В. Риккати 1757
Ch гиперболический косинус
dx, ddx, … дифференциал Г. Лейбниц 1675 (в печати 1684)
d 2x, d 3x,…
картинка 25 интеграл Г. Лейбниц 1675 (в печати 1686)
картинка 26 производная Г. Лейбниц 1675
¦¢x производная Ж. Лагранж 1770, 1779
y’
¦¢(x)
Dx разность Л. Эйлер 1755
картинка 27 частная производная А. Лежандр 1786
картинка 28 определённый интеграл Ж. Фурье 1819-22
S сумма Л. Эйлер 1755
П произведение К. Гаусс 1812
! факториал К. Крамп 1808
|x| модуль К. Вейерштрасс 1841
lim предел У. Гамильтон, многие математики 1853, начало 20 в.
lim
n = ¥
lim
n ® ¥
x дзета-функция Б. Риман 1857
Г гамма-функция А. Лежандр 1808
В бета-функция Ж. Бине 1839
D дельта (оператор Лапласа) Р. Мёрфи 1833
Ñ набла (оператор Гамильтона) У. Гамильтон 1853
Знаки переменных операций
jx функция И. Бернули 1718
f ('x) Л. Эйлер 1734
Знаки индивидуальных отношений
=' равенство Р. Рекорд 1557
>' больше Т. Гарриот 1631
<' меньше
º сравнимость К. Гаусс 1801
|| параллельность У. Оутред 1677
^ перпендикулярность П. Эригон 1634

И. Ньютон в своём методе флюксий и флюент (1666 и следующие гг.) ввёл знаки для последовательных флюксий (производных) величины (в виде

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (ЗН) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (ЗН), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x