БСЭ БСЭ - Большая Советская Энциклопедия (КВ)
- Название:Большая Советская Энциклопедия (КВ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (КВ) краткое содержание
Большая Советская Энциклопедия (КВ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Монохроматичность и высокая направленность позволяют сфокусировать всю энергию лазерного излучения в пятно с размерами, близкими к длине волны излучения. В этом случае электрическое поле световой волны достигает значений, близких к внутриатомным полям. При взаимодействии таких полей с веществом возникают совершенно новые явления.
ПримененияК. э. революционизировали радиофизику СВЧ и оптику. Наиболее глубокие преобразования К. э. внесла в оптику. В радиофизике создание мазеров означало появление радиоустройств хотя принципиально и новых, но вместе с тем обладающих привычными для радиоинженера свойствами. И до появления К. э. в радиофизике существовали когерентные усилители и монохроматические генераторы. К. э. лишь резко улучшила чувствительность усилителей (в 10 3раз) и стабильность частоты генераторов (в десятки тысяч раз). В оптике же все источники света до появления лазеров не обладали ни сколько-нибудь заметной направленностью, ни монохроматичностью. Создание лазеров означало появление источников света, обладающих совершенно новыми свойствами. Это дало невиданную ранее в оптике возможность концентрировать энергию излучения как в пространстве, так и в узком частотном интервале.
Промышленность выпускает различные типы лазеров, которые используются не только как эффективный инструмент научных исследований, но и для решения разного рода практических задач. Основные преимущества лазерного воздействия — малая область распространения тепла, отсутствие переноса электрических зарядов и механического контакта, возможность работать внутри вакуумных баллонов и в агрессивных газах. Одним из первых применений лазеров было измерение расстояния до Луны с большей точностью, чем это было сделано радиофизическим методом. После того как на Луне был установлен уголковый отражатель , расстояние до неё было измерено с точностью до 1,5 м . Существует лазерная локационная служба расстояния Земля — Луна.
Новые возможности открыло применение лазеров в оптических линиях связи. Развитие оптических линий связи с их задачами модуляции колебаний , детектирования , гетеродинирования, преобразования частоты световых колебаний потребовало переноса в оптику методов радиофизики и теории колебаний.
Возникла нелинейная оптика , изучающая нелинейные оптические эффекты, характер которых зависит от интенсивности света ( самофокусировка света , генерация оптических гармоник, вынужденное рассеяние света , параметрическая генерация света, самопросветление или самозатемнения света). Методами нелинейной оптики создан новый класс перестраиваемых по частоте источников когерентного излучения в ультрафиолетовом диапазоне. Нелинейные явления в оптике существуют только в узком диапазоне интенсивностей лазерного излучения. При малых интенсивностях нелинейные оптические эффекты отсутствуют, затем по мере роста интенсивности они возникают, возрастают, но уже при потоках интенсивности 10 14 вт / см 2все известные вещества разрушаются лазерным лучом и превращаются в плазму . Получение и исследование лазерной плазмы является одним из наиболее интересных применений лазеров. Осуществлен термоядерный синтез, инициируемый лазерным излучением .
Благодаря высокой концентрации электромагнитной энергии в пространстве и по спектру лазеры находят широкое применение в микробиологии, фотохимии, химическом синтезе, диссоциации, катализе. К. э. привела к развитию голографии — метода получения объёмных изображений предметов восстановлением структуры световой волны, отражённой предметом.
Работы по К. э. были отмечены Нобелевской премией 1964 по физике (Н. Г. Басов, А. М. Прохоров, СССР, и Ч. Таунс, США).
Лит.: Квантовая электроника. Маленькая энциклопедия, М., 1969; Фабрикант В., Классика, кванты и квантовая электроника, «Наука и жизнь», 1965, № 10; Прохоров А. М., Квантовая электроника, «Успехи физических наук», 1965, т. 85, в. 4; Басов Н. Г., Полупроводниковые квантовые генераторы, там же, 1965, т. 85, в. 4; Шавлов А., Современные оптические квантовые генераторы, там же, 1963, т. 81, в. 4; Таунс Ч., Получение когерентного излучения с помощью атомов и молекул, там же, 1966, т. 88, в. 3.
Н. В. Карлов.

Рис. 3. Метод трех уровней: а — населённости уровней при отсутствии накачки; б — мощное вспомогательное излучение накачки уравнивает населенности уровней Е 1и Е 3, создавая тем самым инверсию населенностей уровня Е 2по отношению к уровню Е 1.

Рис. 1. a — спонтанное излучение фотона; б — вынужденное излучение; в — резонансное поглощение; Е 1и Е 2— уровни энергии атома.

Рис. 2. Распределение частиц по уровням энергии Е 0, Е 1, Е 2, Е 3, Е 4, Е 5в соответствии со статистикой Больцмана; N — число частиц на уровне.
Квантовые переходы
Ква'нтовые перехо'ды,скачкообразные переходы квантовой системы (атома, молекулы, атомного ядра, твёрдого тела) из одного состояния в другое. Наиболее важными являются К. п. между стационарными состояниями , соответствующими различной энергии квантовой системы, — К. п. системы с одного уровня энергии на другой. При переходе с более высокого уровня энергии E k на более низкий E i система отдаёт энергию E k— E i , при обратном переходе — получает её ( рис. ). К. п. могут быть излучательными и безызлучательными. При излучательных К. п. система испускает (переход E k® E i ) или поглощает (переход E i® E k ) квант электромагнитного излучения — фотон— энергии h n (n — частота излучения, h — Планка постоянная ), удовлетворяющей фундаментальному соотношению
E k- E i= hn , (1)
(которое представляет собой закон сохранения энергии при таком переходе). В зависимости от разности энергий состояний системы, между которыми происходит К. п., испускаются или поглощаются фотоны радиоизлучения, инфракрасного, видимого, ультрафиолетового, рентгеновского излучения, g-излучения. Совокупность излучательных К. п. с нижних уровней энергии на верхние образует спектр поглощения данной квантовой системы, совокупность обратных переходов — её спектр испускания (см. Спектры оптические ).
При безызлучательных К. п. система получает или отдаёт энергию при взаимодействии с др. системами. Например, атомы или молекулы газа при столкновениях друг с другом или с электронами могут получать энергию (возбуждаться) или терять её.
Читать дальшеИнтервал:
Закладка: