БСЭ БСЭ - Большая Советская Энциклопедия (МА)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (МА) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (МА)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.33/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (МА) краткое содержание

Большая Советская Энциклопедия (МА) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (МА) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (МА) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Термодинамическая гибкость М. определяется по их геометрическим размерам, стереохимическим и некоторым другим характеристикам. Основной стереохимической характеристикой М. является конфигурация — полное пространственное распределение атомов, образующих М., которое определяется длинами соответствующих связей и величинами валентных углов и не может быть изменено без разрыва химических связей. Как известно, при одной и той же общей конфигурации М. может принимать несколько конформаций ; таким образом, конформация представляет собой переменную статистическую величину — она характеризует распределение в пространстве атомов и атомных групп при неизменных валентных углах, но переменных ориентациях связей. Изменение ориентации происходит вследствие относительных поворотов этих атомов и групп под действием теплового движения звеньев. В отсутствие взаимодействий с другими М. (например, в разбавленном растворе) вытянутая поначалу гипотетическая полимерная цепь в результате ряда элементарных поворотов приобретает конформацию так называемого статистического клубка. Размеры такого клубка выражаются, например, через среднеквадратичное расстояние между его концами. Сопоставление этих размеров с теми, которые М. приобрела бы при отсутствии торможения внутреннего вращения (они рассчитываются теоретически), позволяет оценить термодинамическую гибкость. Размеры М., необходимые для расчётов гибкости, могут быть найдены дифракционными или гидродинамическими методами, а некоторые конфигурационные характеристики — динамо- или электрооптическими (двойное лучепреломление в потоке, эффект Керра).

В отличие от термодинамической, или равновесной, гибкости, кинетическая гибкость не является постоянной характеристикой М., а зависит от скорости внешнего деформирующего воздействия.

Учесть влияние скорости воздействия на кинетическую гибкость М. можно, зная её релаксационный спектр (см. Релаксационные явления в полимерах ). Между равновесной и кинетической гибкостью имеется определённая связь, ибо в конечном счёте обе эти характеристики определяются потенциалом торможения.

С позиций статистической физики способность М. к деформациям можно характеризовать конформационным набором, который называется также статистическим весом (или конформационной энтропией). С уменьшением степени полимеризации уменьшается и число возможных конформаций. Относительно короткие М. олигомеров , или мультимеров, вообще почти не деформируемы, но лишь потому, что в них мало число звеньев, а потенциал торможения — конечная мера гибкости — тот же, что в длинных цепях. Статистическим весом можно характеризовать и конфигурацию, что становится вполне очевидным в случае сополимеров. Число возможных способов распределения разных звеньев вдоль цепи определяет конфигурационную энтропию М.; отрицательное значение этой величины представляет собой меру информации , которую может содержать М. Способность М. к хранению информации является одной из самых важных их характеристик, значимость которой стала понятна лишь после открытия генетического кода.

С равновесной и кинетической гибкостью М. связаны уникальные механические свойства полимеров, в частности высокоэластичность (см. Высокоэластическое состояние ). С конформационной энтропией полиэлектролитов и сополимеров связана возможность превращения химической энергии в механическую (см. Хемомеханика ). С конфигурационной энтропией связана способность М. к образованию устойчивых вторичных молекулярных структур, достигающих высокой степени совершенства и обладающих специфическими свойствами в М. важнейших биополимеровбелков и нуклеиновых кислот . Применительно к биополимерам можно вместо конфигурационной энтропии пользоваться термином «конфигурационная информация», которая, в соответствии со сказанным выше, определяет единственность (то есть нестатистичность, в отличие от синтетических М.) конформаций белковых М., предопределяющую их способность быть ферментами, переносчиками кислорода и т. п. В синтетических сополимерах вторичные молекулярные структуры возникают вследствие избирательных взаимодействий определённым образом расположенных вдоль цепи звеньев разных типов; эти структуры лишь умеренно специфичны, но могут служить простейшими моделями запоминания на уровне М.

Лит.: Волькенштейн М. В.. Конфигурационная статистика полимерных цепей, М. — Л., 1959; его же, Молекулы и жизнь, М., 1965; Цветков В. Н., Эскин В. Е., Френкель С. Я., Структура макромолекул в растворах, М., 1964; Моравец Г., Макромолекулы в растворе, перевод с английского, М., 1967; Бирштейн Т. М., Птицын О. Б., Конформации макромолекул, М., 1964; Флори П., Статистическая механика цепных молекул, перевод с английского, М., 1971; Френкель С. Я., Гибкость макромолекул, в книге: Энциклопедия полимеров, т. 1, М., 1972; Макромолекула, там же, т. 2, М., (в печати).

С. Я. Френкель.

Макронуклеус

Макрону'клеус(от макро... и лат. nucleus — ядро), большее (соматическое) ядро у инфузорий . У большинства инфузорий М. характеризуется высокой степенью полиплоидии , то есть содержит от нескольких десятков до нескольких тысяч хромосомных наборов; делится путём перешнуровки, реже — почкуется, при этом между дочерними ядрами распределяются целые хромосомные наборы. При половом процессе у инфузорий — конъюгации — М. разрушается и заменяется новым, развивающимся из генеративного ядра — микронуклеуса ; при этом (а также при каждом делении) хромосомные наборы М. умножаются путём эндомитоза (автономного удвоения числа хромосом). Генетический аппарат М. активен, синтезирует все типы рибонуклеиновой кислоты и направляет все биосинтетические процессы в клетке. У группы низших многоядерных инфузорий М. остаются диплоидными, не способны делиться; при каждом делении особи имеющиеся М. распределяются между дочерними инфузориями, а недостающие М. возникают вновь из микронуклеусов.

И. Б. Райков.

Макрорельеф

Макрорелье'ф(от макро... и рельеф ), крупные формы рельефа, определяющие общий облик большого участка земной поверхности: горные хребты, плоскогорья, равнины, низменности.

Макроспора

Макроспо'ра(от макро... ) , крупная спора разноспоровых высших растений; то же, что мегаспора.

Макроспорангий

Макроспора'нгий(от макро... и спорангий ), орган разноспоровых растений, в котором развиваются мегаспоры ; то же, что мегаспорангий .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (МА) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (МА), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x