БСЭ БСЭ - Большая Советская Энциклопедия (МА)
- Название:Большая Советская Энциклопедия (МА)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (МА) краткое содержание
Большая Советская Энциклопедия (МА) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Указанные три этапа синтеза механизмов составляют основное содержание задачи при их проектировании, так как все последующие операции по расчёту на прочность деталей и по установлению конструктивных форм уже не могут существенно изменить его кинематических и динамических свойств. Дальнейшее развитие методов синтеза механизмов в работах русских учёных А. П. Котельникова (1865—1944), В. В. Добровольского (1880—1956) и других отечественных и зарубежных учёных состояло в отыскании наиболее целесообразных методов выполнения отдельных этапов синтеза и применения их к различным видам механизмов (с гидравлическими и электрическими устройствами, пространственные со сложным движением рабочего звена, самонастраивающиеся механизмы и т. п.). При этом выяснилось, что в простейших случаях можно удовлетворить требованиям, предъявляемым к основному критерию и ограничивающим условиям, используя несложные графические методы. Однако применение этих методов не избавляет от необходимости решать задачу синтеза в нескольких вариантах для получения результата, близкого к оптимальному. Только появление ЭВМ дало возможность эффективно и быстро выполнять третий этап синтеза, определяя оптимальные сочетания параметров механизма и даже решая такие задачи синтеза, которые ранее не могли быть решены из-за сложности и трудоёмкости вычислений. В 1965—72 для типовых задач синтеза механизмов были составлены программы вычислений на ЭВМ, позволяющие оптимизировать различные критерии и учитывать большое количество кинематических, динамических и конструктивных ограничений.
Раздел динамики механизмов иногда называется динамикой машин, так как учёт динамических явлений, происходящих в механизмах, имеет первостепенное значение при проектировании машин. В первых работах по динамике машин, выполненных Н. Е. Жуковским и Н. И. Мерцаловым (1866—1948), использовалась только механика твёрдого тела применительно к механизмам с жёсткими звеньями. После внедрения в машины новых механизмов с гидравлическими, а затем и с пневматическими устройствами (1930—50) динамика машин стала опираться не только на механику твёрдого тела, но и на механику жидкостей и газов (см. Механика ). В связи с существенным ростом нагруженности и быстроходности машин и повышением требований к их качеству значительно изменилось содержание задач динамики машин: появилась необходимость учитывать упругие свойства звеньев, зазоры в подвижных соединениях, переменность масс и моментов инерции и т. п. Особое внимание стало уделяться развитию методов теории колебаний механических систем в применении к реальному механизму с его упругими и не вполне упругими элементами, зазорами, сухим трением и смазкой, наличием сложных закономерностей деформирования материалов и т. п. Изучалось и продолжает изучаться вредное действие колебаний, вызывающих увеличение нагрузок на звенья механизма, потерю устойчивости, усталостные поломки, недопустимое изменение предписанного закона движения. Вместе с тем возможно и полезное применение колебаний в вибрационных машинах , для которых колебательное движение рабочего органа составляет основное движение, заданное назначением машины. К этим машинам принадлежат, например, вибротранспортёры, вибросортировочные машины, вибромашины для забивки свай и др. Решение новых задач динамики машин основывается на развитии методов аналитической механики и нелинейной теории колебаний, механики переменной массы и теории упругости. Особое значение для решения этих задач имеют те методы, которые позволяют достаточно эффективно и быстро без интегрирования систем дифференциальных уравнений получать динамические критерии для расчёта механизмов по частотам и амплитудам установившихся колебаний, для определения границ устойчивости и т. п.
Теория машин-автоматов сравнительно недавно (1945—50) стала рассматриваться как одна из важнейших частей теории машин и механизмов. Машины-автоматы отличаются от неавтоматизированных машин в первую очередь тем, что последовательность работы отдельных механизмов, включая механизмы загрузки и выгрузки, задаётся системой управления. Поэтому развитие теории машин-автоматов связано с совершенствованием методов построения схем управления по выбранному критерию оптимальности, например по условию получения минимального числа элементов, составляющих схему. Наибольшее распространение получили методы, основанные на применении алгебры-логики, и соответственно этот раздел теории машин-автоматов получил название логического синтеза систем управления. В системах управления наряду с электрическими элементами стали применяться пневматические, обладающие, как правило, большей надёжностью. Развитие методов построения систем управления машинами-автоматами привело к созданию систем программного управления, в которых программа требуемых перемещений выражается в форме чисел (цифр) — элементарных (малых) шагов. Для реализации этих шагов предусматривают специальные типы двигателей, называемые шаговыми электродвигателями . Особую ценность имеют самонастраивающиеся и адаптирующиеся системы программного управления, в которых программа автоматически корректируется с учётом опыта предшествующих циклов работы системы и условий, в которых должна работать эта система.
Последним достижением теории машин-автоматов является разработка методов проектирования роботов , то есть машин-автоматов, моделирующих свойства и функции живых организмов и, в частности, имитирующих действия человека при перемещении в пространстве орудий и объектов труда. По своей схеме робот во многом тождествен манипулятору (механической руке), который применяется для работы в вакууме, под водой и в агрессивных средах. Исполнительные органы манипуляторов способны совершать сложные пространств, движения, необходимые для выполнения рабочих операций. Для управления действиями манипуляторов и роботов используются современные методы и средства вычислительной техники, позволяющие оперативно составлять и менять программы движений. В сочетании со станками, контрольными и сборочными автоматами, оснащенными системами программного управления, применение роботов способствует комплексной автоматизации производства. Их применение придаёт системам машин-автоматов гибкость и приспосабливаемость к изменяющимся условиям производства. При проектировании роботов и манипуляторов используются в едином комплексе методы теории машин и механизмов и теории управления. Применительно к проектированию роботов и автоматических манипуляторов развиваются как общие методы — структурный синтез пространств, незамкнутых кинематических цепей, кинематика и динамика пространств, механизмов со многими степенями свободы, теория механизмов с переменной структурой, изменяющейся в процессе движения, так и методы решения задач, относящихся только к манипуляторам, — создание манёвренности, устойчивости в работе, выбор правильного соотношения полезных и холостых ходов, а также проектирование таких систем, в которых оператор чувствует усилие, создаваемое на рабочем органе или на захвате.
Читать дальшеИнтервал:
Закладка: