БСЭ БСЭ - Большая Советская Энциклопедия (МЕ)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (МЕ) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (МЕ)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.38/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (МЕ) краткое содержание

Большая Советская Энциклопедия (МЕ) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (МЕ) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (МЕ) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В. М. Живов.

Метательные машины

Мета'тельные маши'ны(военные), боевые машины, применявшиеся в древности и средние века для поражения живой силы и разрушения оборонительных сооружений противника. Устройство М. м. было основано на использовании энергии скрученных или растянутых различных волокон. М. м. были известны на Древнем Востоке (в Ассирии, Индии и др.), в Древней Греции и особенно в Древнем Риме. М. м. делились на катапульты и баллисты. У римлян М. м. были сведены в подразделения, насчитывавшие до 6 М. м. В 5 в. баллисты и катапульты были вытеснены в Византии новым видом М. м. (с противовесом) — фрондиболой. В Древней Руси М. м. применялись с 10 в., главным образом при осаде и обороне городов до появления огнестрельного оружия (14 в.).

Лит.: Артиллерия, 2 изд., М., 1938; Разин Е., История военного искусства, т. 1, М., 1955.

Метатеорема

Метатеоре'ма(от мета... ) , теорема относительно объектов (понятий, определений, аксиом, доказательств, правил вывода, теорем и др.) какой-либо научной теории (т. н. предметной, или объектной, теории), доказываемая средствами метатеории этой теории. Термин «М.» употребляется преимущественно в применении к теоремам об объектах формализованных теорий (т. е. в случае, когда предметная теория является исчислением, или формальной системой ) . Если М., относящаяся к какому-либо логико-математическому исчислению, доказывается т. н. финитными средствами, ни в какой форме не использующими абстракции актуальной бесконечности, то её относят к метаматематике ; таковы, например, теорема о дедукции для исчисления высказываний или исчисления предикатов, теорема Гёделя о неполноте формальной арифметики и более богатых систем (см. Полнота в логике), теорема Чёрча о неразрешимости разрешения проблемы для исчисления предикатов, теорема Тарского о неопределимости предиката истинности для широкого класса исчислений средствами самих этих исчислений. Если же на характер трактуемых в М. понятий и (или) на средства её доказательства не накладывается никаких финитистских, или конструктивистских (см. Конструктивное направление в математике), ограничений, то такую М. причисляют к т. н. теоретико-множественной логике предикатов; примеры: теорема Гёделя о полноте исчисления предикатов, теорема Лёвенхейма — Сколема об интерпретируемости любой непротиворечивой теории на области натуральных чисел и вообще любые предложения, в которых говорится что-либо о «произвольной интерпретации», «совокупности всех интерпретаций», «общезначимости» и т.п. (в частности, все результаты о категоричности различных систем аксиом, т. е. об изоморфизме произвольных их интерпретаций, удовлетворяющих, быть может, некоторым дополнительным условиям). К М. относятся и любые теоремы о теоремах содержательных математических теорий, например многочисленные «принципы двойственности» из различных областей математики (проективная геометрия, многие алгебраические теории и др.).

Лит . см. при статьях Метаматематика , Метатеория .

Ю. А. Гастев.

Метатеория

Метатео'рия(от мета... ), теория, анализирующая структуру, методы и свойства какой-либо другой теории — т. н. предметной теории, или объектной. Термин «М.» осмысленно употребляется лишь по отношению к некоторой конкретной предметной теории; так, М. логики называют металогикой , М. математики — метаматематикой ; аналогичный смысл имеют термины «метахимия», «метабиология» и т. п. (за исключением «метафизики»). В принципе можно говорить о М. любой научной дисциплины, как дедуктивной, так и недедуктивной (например, метатеоретическая роль в известном смысле играет философия); однако по-настоящему продуктивным понятие М. оказывается в применении именно к дедуктивным наукам: математике, логике и математизированным фрагментам естествознания и др. наук (например, лингвистики). Более того, фактическим объектом рассмотрения в М. оказывается, как правило, не сама по себе та или иная содержательная научная теория, а её формальный аналог и экспликат — точное понятие исчисления ( формальной системы ); если же подлежащая исследованию в М. теория носит содержательный характер, то она предварительно подвергается формализации . Т. о., часть М., изучающая структуру своей предметной теории, имеет дело с ней именно как с формальной системой, т. е. воспринимает её элементы как лишённые какого бы то ни было «содержания» (смысла) чисто формальные конструктивные объекты , строго идентифицируемые (или, наоборот, различаемые) между собой, из которых по четко сформулированным правилам образования строятся знакосочетания, являющиеся «выражениями» (формулами) данной формальной системы. Эта часть М. — т. н. синтаксис — изучает также дедуктивные средства рассматриваемой предметной теории (см. Дедукция ); в ней, в частности, определяется понятие (формального) доказательства для данной предметной теории, а также более общее понятие вывода из данных посылок. Сама М., в отличие от предметной теории, есть теория содержательная: характер используемых в ней средств описания, рассуждения и доказательства может быть каким-либо специальным образом оговорён и ограничен, но во всяком случае сами эти средства суть содержательно понимаемые элементы обычного (естественного) языка и «логики здравого смысла». Основное содержание М. составляют метатеоремы , или «теоремы о теоремах». Примером синтаксической метатеоремы может служить теорема о дедукции, устанавливающая связь между понятием выводимости (доказуемости) в данной предметной теории (например, в исчислении высказываний или исчислении предикатов) и логической операцией импликации , входящей в «алфавит» данной предметной теории.

В круг интересов М. входит также рассмотрение всевозможных интерпретаций исследуемой формальной системы; соответствующая часть (или аспект) М., воспринимающая предметную теорию как формализованный язык , называют семантикой (см. Логическая семантика ). Примером семантической метатеоремы является теорема о полноте классического исчисления высказываний, согласно которой для этого исчисления понятия доказуемой формулы (формальной теоремы) и формулы, истинной при некоторой «естественной» его интерпретации, совпадают.

Многие понятия М. (и относящиеся к ним метатеоремы) носят «смешанный» характер: и синтаксический, и семантический. Таково, например, важнейшее понятие непротиворечивости , определяемое и как невыводимость в предметной теории формального противоречия (т. е. конъюнкции некоторой формулы и её отрицания ; т. н. внутренняя непротиворечивость), и как «соответствие» данной предметной теории некоторой её «естественной» интерпретации (т. н. внешняя, или семантическая, непротиворечивость); совпадение обоих этих понятий по объёму есть нетривиальный факт М., относящийся, очевидно, и к синтаксису, и к семантике данной теории. Классическим примером метатеоремы, связывающей ряд важнейших синтаксических и семантических понятий, являются теоремы Гёделя о неполноте формальной арифметики (и содержащих её более богатых логико-математических исчислений) и о невозможности доказательства непротиворечивости широкого класса исчислений формализуемыми в этих исчислениях средствами. Понятие разрешимости формальной теории носит, напротив, чисто синтаксический характер, а понятие полноты — по преимуществу семантический. М., конечно, сама может быть формализована и быть предметом изучения некоторой метаметатеории и т. д.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (МЕ) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (МЕ), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x