БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (НЕ) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (НЕ)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.38/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (НЕ) краткое содержание

Большая Советская Энциклопедия (НЕ) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (НЕ) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (НЕ) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Согласно основной идее общей теории относительности, свойства пространства событий реального мира определяются движением и распределением масс, а движение и распределение масс, в свою очередь, определяются метрикой пространства-времени. Эта взаимосвязь находит своё отражение в уравнениях поля — нелинейных уравнениях с частными производными, определяющих метрику поля. В теории тяготения Ньютона уравнения движения (законы механики Ньютона) постулируются отдельно от уравнений поля (линейные уравнения Лапласа и Пуассона для ньютонова потенциала). В общей же теории относительности уравнения движения тел содержатся в уравнениях поля. Однако строгое решение уравнений поля, представляющее интерес для Н. м., и вид строгих уравнений движения задачи n тел, даже для n = 2, в общей теории относительности не получены. Лишь для n = 1 удалось найти строгие решения уравнений поля : решение Шварцшильда для сферически симметричного неподвижного тела и решение Керра, описывающее поле вращающегося тела сферической структуры. Для решения задачи n тел ( n > 2) приходится прибегать к приближённым методам и искать решение в виде рядов по степеням малых параметров. Таким параметром в случае движения тел Солнечной системы часто служит отношение квадрата характеристической скорости орбитального движения тел к квадрату скорости света. Вследствие малости этого отношения (около 10 -8) в уравнениях движения и их решениях достаточно для всех практических приложений учитывать лишь члены первой степени относительно этого параметра.

Релятивистские эффекты в движении больших планет Солнечной системы могут быть получены с достаточной точностью на основе решения Шварцшильда. Основным эффектом при этом является вековое смещение перигелиев планет. В решении Шварцшильда имеется также релятивистский вековой член в движении узла орбиты, но выделить этот эффект в явном виде из наблюдений не удаётся. Частично этот вековой член учитывается в радиолокационном эффекте при радиолокации Меркурия и Венеры с Земли (радиолокационный эффект состоит в дополнительном по сравнению с ньютоновским запаздыванием сигнала при возвращении его на Землю). Этот эффект подтвержден экспериментально. Релятивистские эффекты в движении малых планет и комет выявить достаточно уверенно пока не удаётся из-за отсутствия хорошо разработанной ньютоновской теории движения этих объектов и недостаточного количества точных наблюдений.

Релятивистские эффекты в движении Луны получаются на основе решения релятивистской задачи трёх тел и обусловлены главным образом действием Солнца. Они складываются из вековых движений узла и перигея орбиты Луны со скоростью 1,91” в столетие (геодезическая прецессия), а также из периодических возмущений в координатах Луны. Эти эффекты, по-видимому, смогут быть выявлены при лазерной локации Луны. Для усовершенствования теорий движения остальных естественных спутников планет достаточно к ньютоновой теории добавить релятивистские вековые члены в элементах орбит. Первая группа таких членов обусловлена шварцшильдовским смещением перицентра. Вторая группа — это вековые члены в долготе перицентра и узла, вызванные собственным вращением планеты. Наконец, движение планеты вокруг Солнца также приводит к вековым членам в этих элементах (геодезическая прецессия). Все эти члены для некоторых спутников могут достигать значительной величины (особенно для близких спутников Юпитера), но отсутствие точных наблюдений препятствует их обнаружению. Определение релятивистских эффектов в движении искусственных спутников Земли также не даёт положительных результатов из-за невозможности точного учёта влияния атмосферы и аномалий гравитационного поля Земли на их движение. Большой теоретический интерес представляют релятивистские поправки во вращательном движении небесных тел, однако, их обнаружение связано с ещё большими трудностями. Реальным представляется лишь выявление релятивистских эффектов при изучении прецессии гироскопов на Земле и на спутниках Земли.

Лит.: Брауэр Д., Клеменс Дж., Методы небесной механики, пер. с англ., М., 1964; Брумберг В. А., Релятивистская небесная механика, М., 1972; Гребеников Е. А., Рябов Ю. А., Новые качественные методы в небесной механике, М., 1971; Дубошин Г. Н., Небесная механика, 2 изд., М., 1968; Зигель К. Л., Лекции по небесной механике, пер. с нем., М., 1959; Пуанкаре А., Лекции по небесной механике, пер. с франц., М., 1965; его же, Новые методы небесной механики, Избр. труды, т. 1—2, М., 1971—72; Смарт У. М., Небесная механика, пер. с англ., М., 1965; Субботин М. Ф., Введение в теоретическую астрономию, М., 1968; Уинтнер А., Аналитические основы небесной механики, пер. с англ., М., 1967; Чеботарев Г. А., Аналитические и численные методы небесной механики, М. — Л., 1965; Шарлье К., Небесная механика, пер. с нем., М., 1966; Справочное руководство по небесной механике и астродинамике, М., 1971.

Г. А. Чеботарев.

Небесная сфера

Небе'сная сфе'ра, воображаемая вспомогательная сфера произвольного радиуса, на которую проектируются небесные светила; служит для решения различных астрометрических задач. Представление о Н. с. возникло в глубокой древности; в основу его легло зрительное впечатление о существовании куполообразного небесного свода. Это впечатление связано с тем, что в результате огромной удалённости небесных светил человеческий глаз не в состоянии оценить различия в расстояниях до них, и они представляются одинаково удалёнными. У древних народов это ассоциировалось с наличием реальной сферы, ограничивающей весь мир и несущей на своей поверхности многочисленные звёзды. Т. о., в их представлении Н. с. была важнейшим элементом Вселенной. С развитием научных знаний такой взгляд на Н. с. отпал. Однако заложенная в древности геометрия Н. с. в результате развития и совершенствования получила современный вид, в котором и используется в астрометрии.

Радиус Н. с. может быть принят каким угодно: в целях упрощения геометрических соотношений его полагают равным единице. В зависимости от решаемой задачи центр Н. с. может быть помещен в место, где находится наблюдатель (топоцентрическая Н. с.), в центр Земли (геоцентрическая Н. с.), в центр той или иной планеты (планетоцентрическая. Н. с.), в центр Солнца (гелиоцентрическая Н. с.) или в любую др. точку пространства. Каждому светилу на Н. с. соответствует точка, в которой её пересекает прямая, соединяющая центр Н. с. со светилом (с его центром). При изучении взаимного расположения и видимых движений светил на Н. с. выбирают ту или иную систему координат (см. Небесные координаты ) , определяемую основными точками и линиями. Последние обычно являются большими кругами Н. с. Каждый большой круг сферы имеет два полюса, определяющиеся на ней концами диаметра, перпендикулярного к плоскости данного круга.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (НЕ) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (НЕ), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x