БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (НЕ) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (НЕ)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.38/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (НЕ) краткое содержание

Большая Советская Энциклопедия (НЕ) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (НЕ) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (НЕ) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Для получения нейтронов с энергиями 2—15 Мэв наиболее употребительны реакции D (d, n) 3He и T (d, n) 4He. Мишенью служит гидрид металла (обычно Zr или Ti) с дейтерием или тритием. В реакции D + d значительный выход нейтронов наблюдается уже при энергии дейтронов ~ 50 кэв. Энергия нейтронов при этом ~ 2 Мэв и растет с ростом энергии протонов. Для нейтронов с энергией 13—20 Мэв предпочтительнее реакция Т + d, дающая больший выход нейтронов. Например, при энергии дейтронов 200 кэв из толстой тритиево-циркониевой мишени вылетают нейтроны с энергией ~ 14 Мэв в количестве 10 8в 1 сек на 1 мкк дейтронов.

Характеристики наиболее распространённых ампульных нейтронных источников.

Ядерная реакция Период полураспа- да Число нейтронов в 1 сек на 1 кюри Энергия нейтронов в Мэв
Реакция (a, n) Ra + Be Rn + Be Po + Be Pu + Be Am + Be 1620 лет 3,8 сут 139 сут 24 тыс. лет 470 лет 10 710 710 610 610 6 Сплошной спектр от 0,1 до 12 с максимумом в области 3—5
Реакция (g, n) Ra + D 2O MsTh + Be MsTh + D 2O 140La + Be 140La + D 2O 124Sb + Be 72Ca + D 2O 24Na + Be 24Na + D 2O 1620 лет 6,7 года 6,7 года 40 ч 40 ч 60 сут 14,1 ч 14,8 ч 14,8 ч 10 4—10 5 0,12 0,83 0,2 0,62 0,15 0,024 0,13 0,83 0,22
Спонтанное деление Число нейтронов на 1 мг Сплошной спектр 0,1—12 с максимумом в области 1, 5
236Pu 240Pu 244Cm 252Cf 2,9 года 6,6×10 3лет 18,4 года 2,6 года 26 1,1 9×10 32,7×10 9

Реакция (р, n) на ядрах 7 Li и др. удобна для получения моноэнергетических нейтронов в широком диапазоне энергии. Она обычно используется в электростатических ускорителях . Для получения нейтронов более высоких энергий (~ 10 8 эв ) используются реакции (р, n) и (d, pn) на пучках протонов и дейтронов высоких энергий. Реакция (р, n) осуществляется за счёт непосредственного выбивания нейтрона из ядра (без промежуточной стадии возбуждения ядра), а также за счёт перезарядки летящего нуклона в поле ядра. Нейтроны вылетают в этом случае преимущественно вперёд (по направлению протонного пучка), они монохроматичны при фиксированном угле вылета. Реакция (d, pn) (развал дейтрона в поле ядра) приводит к генерации нейтронов с энергией, равной 1/ 2энергии дейтрона.

В качестве Н. и. используются также электронные ускорители. Интенсивные пучки быстрых электронов направляются на толстые мишени из тяжёлых элементов (Pb, U). Возникающие тормозные g-кванты (см. Тормозное излучение ) вызывают реакцию (g, n) или деление ядер, сопровождающееся испусканием нейтронов. Все нейтронные генераторы могут работать как в непрерывном, так и импульсном режимах.

Самые мощные источники нейтронов — ядерные реакторы . Нейтронный пучок, выведенный из реактора, содержит нейтроны с энергиями от долей эв до 10—12 Мэв. В мощных реакторах плотность потока нейтронов в центре активной зоны реактора достигает 10 15нейтронов в 1 сек с 1 см 2(при непрерывном режиме работы). Импульсные реакторы , работающие в режиме коротких вспышек, создают более высокую плотность потока нейтронов, например импульсный реактор на быстрых нейтронах в Объединённом институте ядерных исследований (ИБР) имеет в момент вспышки в центре активной зоны 10 20нейтронов в 1 сек с 1 см 2 .

Лит.: Власов Н. А., Нейтроны, 2 изд., М., 1971; Портативные генераторы нейтронов в ядерной геофизике, под ред. С. И. Савосина, М., 1962.

Б. Г. Ерозолимский.

Нейтронные генераторы Нейтронный каротаж Нейтронный каротажметод - фото 115

Нейтронные генераторы.

Нейтронный каротаж

Нейтро'нный карота'ж,метод геофизических исследований, основанный на взаимодействии нейтронов с веществом горных пород. В скважину опускают толстостенную стальную гильзу, содержащую нейтронный источник и детектор, регистрирующий вторичное излучение. Последнее возникает в результате взаимодействия нейтронов с атомными ядрами породы (см. Нейтронные детекторы ). Между источником и детектором устанавливается фильтр из парафина, Pb или Bi, препятствующий прямому попаданию нейтронов из источника в детектор. Сигналы детектора, усиленные и сформированные с помощью электронных устройств, передаются по кабелю наверх для регистрации и анализа. Перемещая гильзу вдоль скважины ( рис. ), записывают каротажную диаграмму — зависимость скорости счёта сигналов от глубины. Н. к. был впервые осуществлен в США (Б. М. Понтекорво , 1941), в СССР развитие Н. к. связано с именами Б. Б. Лапука и Г. Н. Флёрова .

Существует около 10 вариантов Н. к., отличающихся типом нейтронного источника, видом вторичного излучения, а также характером получаемой информации. В случае нейтрон-нейтронного каротажа регистрируются тепловые нейтроны, образующиеся в результате замедления в горной породе быстрых нейтронов источника (см. Замедление нейтронов ). При нейтронном g-каротаже регистрируются g-кванты, возникающие при захвате медленных нейтронов ядрами (см. Медленные нейтроны ). В этих вариантах Н. к. с источником непрерывного действия определяется относительное количество водорода в пластах. Так как водород — наиболее эффективный замедлитель нейтронов, то в породах с порами, заполненными водой или нефтью, нейтроны замедляются уже на небольших расстояниях от источника. Например, в песчанике с 20%-ной пористостью расстояние, в котором около 60% нейтронов источника (с энергией 5 Мэв ) становятся тепловыми, — порядка нескольких см. Число тепловых нейтронов (или g-квантов радиационного захвата ), достигающих при этом детектора, невелико, так как расстояние до него существенно больше (30—50 см ). С уменьшением содержания водорода в пласте длина замедления растет, нейтроны становятся тепловыми в области, более близкой к детектору, и число его отсчётов увеличивается. Т. о., минимумы на каротажной диаграмме соответствуют пластам с повышенным содержанием водорода.

Кроме пористых пластов (песчаника, известняка) с водой или нефтью, диаграммы Н. к. дают возможность выделить более плотные пласты, границы пластов, глинистые прослойки, а также границы между жидкостью и газом, что даёт возможность применять Н. к. при поисках месторождений газа.

Н. к. с источником непрерывного действия не даёт, однако, возможности надёжно отличать пласты, насыщенные водой и нефтью, так как они как замедлители нейтронов неразличимы. Для этой цели эффективнее оказался Н. к. с импульсным источником (импульсный Н. к.). Пластовая вода обычно содержит минеральные соли, например NaCI, в то время как в нефти они отсутствуют. Из-за поглощения нейтронов в Cl время жизни t тепловых нейтронов в пласте, содержащем воду, меньше, чем в нефтяном пласте. В импульсном Н. к. нейтроны испускаются в течение коротких интервалов времени — от 1 до 10 мксек, а регистрируются лишь те сигналы от детектора, которые приходят через время t > t после нейтронного импульса. При этом число регистрируемых сигналов будет зависеть от t. В пласте, содержащем воду, для которого t невелико, к моменту t остаётся мало нейтронов и интенсивность регистрации мала. В пласте же, насыщенном нефтью, t больше и нейтронов остаётся больше. В районах с сильной минерализацией пластовых вод (200 г NaCI на 1 л ) достигаются десятикратные различия в показателях прибора против нефте- и водонасыщенных участков пласта. Импульсный Н. к. получил распространение после создания малогабаритных импульсных нейтронных генераторов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (НЕ) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (НЕ), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x