БСЭ БСЭ - Большая Советская Энциклопедия (СО)
- Название:Большая Советская Энциклопедия (СО)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (СО) краткое содержание
Большая Советская Энциклопедия (СО) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В активных областях С. наблюдаются факелы — яркие фотосферные образования, видимые в белом свете преимущественно вблизи края диска С. Обычно факелы появляются раньше пятен и существуют некоторое время после их исчезновения. Площадь факельных площадок в несколько раз превышает площадь соответствующей группы пятен. Количество факелов на диске С. зависит от фазы цикла солнечной активности. Максимальный контраст (18%) факелы имеют вблизи края диска С., но не на самом краю. В центре диска С. факелы практически не видны, контраст их очень мал. Факелы имеют сложную волокнистую структуру, контраст их зависит от длины волны, на которой проводятся наблюдения. Температура факелов на несколько сот градусов превышает температуру фотосферы, общее излучение с 1 см 2превышает фотосферное на 3—5%. По-видимому, факелы несколько возвышаются над фотосферой. Средняя продолжительность их существования — 15 сут , но может достигать почти 3 мес .
Хромосфера. Выше фотосферы расположен слой атмосферы С., называемый хромосферой. Без специальных телескопов с узкополосными светофильтрами хромосфера видна только во время полных солнечных затмений как розовое кольцо, окружающее тёмный диск, в те минуты, когда Луна полностью закрывает фотосферу. Тогда можно наблюдать и спектр хромосферы, т. н. спектр вспышки. На краю диска С. хромосфера представляется наблюдателю как неровная полоска, из которой выступают отдельные зубчики — хромосферные спикулы. Диаметр спикул 200—2000 км , высота порядка 10 000 км , скорость подъёма плазмы в спикулах до 30 км / сек . Одновременно на С. существует до 250 тыс. спикул. При наблюдении в монохроматическом свете (например, в свете линии ионизованного кальция 3934 Å) на диске С. видна яркая хромосферная сетка, состоящая из отдельных узелков — мелких диаметром 1000 км и крупных диаметром от 2000 до 8000 км . Крупные узелки представляют собой скопления мелких. Размеры ячеек сетки 30—40 тыс. км . Полагают, что спикулы образуются на границах ячеек хромосферной сетки. При наблюдении в свете красной водородной линии 6563 Å около солнечных пятен в хромосфере видна характерная вихревая структура ( рис. 3а ). Плотность в хромосфере падает с увеличением расстояния от центра С. Число атомов в 1 см 3изменяется от 10 15вблизи фотосферы до 10 9в верхней части хромосферы. Спектр хромосферы состоит из сотен эмиссионных спектральных, линий водорода, гелия, металлов. Наиболее сильные из них — красная линия водорода Н a(6563 Å) и линии Н и К ионизованного кальция с длиной волны 3968 Å и 3934 Å. Протяжённость хромосферы неодинакова при наблюдении в разных спектр, линиях: в самых сильных хромосферных линиях её можно проследить до 14 000 км над фотосферой. Исследование спектров хромосферы привело к выводу, что в слое, где происходит переход от фотосферы к хромосфере, температура переходит через минимум и по мере увеличения высоты над основанием хромосферы становится равной 8—10 тыс. К, а на высоте в несколько тыс. км достигает 15—20 тыс. К. Установлено, что в хромосфере имеет место хаотическое (турбулентное) движение газовых масс со скоростями до 15×10 3 м / сек . В хромосфере факелы в активных областях видны в монохроматическом свете сильных хромосферных линий как светлые образования, называемые обычно флоккулами. В линии Н aхорошо видны тёмные образования, называемые волокнами. На краю диска С. волокна выступают за диск и наблюдаются на фоне неба как яркие протуберанцы. Наиболее часто волокна и протуберанцы встречаются в четырёх расположенных симметрично относительно солнечного экватора зонах: полярных зонах севернее + 40° и южнее —40° гелиографической широты и низкоширотных зонах около ± 30° в начале цикла солнечной активности и 17° в конце цикла. Волокна и протуберанцы низкоширотных зон показывают хорошо выраженный 11-летний цикл, их максимум совпадает с максимумом пятен. У высокоширотных протуберанцев зависимость от фаз цикла солнечной активности выражена меньше, максимум наступает через 2 года после максимума пятен. Волокна, являющиеся спокойными протуберанцами, могут достигать длины солнечного радиуса и существовать в течение нескольких оборотов С. Средняя высота протуберанцев над поверхностью С. составляет 30—50 тыс. км , средняя длина — 200 тыс. км , ширина — 5 тыс. км . Согласно исследованиям А. Б. Северного , все протуберанцы по характеру движений можно разбить на 3 группы: электромагнитные, в которых движения происходят по упорядоченным искривленным траекториям — силовым линиям магнитного поля; хаотические, в которых преобладают неупорядоченные, турбулентные движения (скорости порядка 10 км / сек ); эруптивные, в которых вещество первоначально спокойного протуберанца с хаотическими движениями внезапно выбрасывается с возрастающей скоростью (достигающей 700 км / сек ) прочь от С. температура в протуберанцах (волокнах) 5—10 тыс. К, плотность близка к средней плотности хромосферы. Волокна, представляющие собой активные, быстро меняющиеся протуберанцы, обычно сильно изменяются за несколько ч или даже мин . Форма и характер движений в протуберанцах тесно связаны с магнитным полем в хромосфере и солнечной короне.
Солнечная корона — самая внешняя и наиболее разрежённая часть солнечной атмосферы, простирающаяся на несколько (более 10) солнечных радиусов. До 1931 корону можно было наблюдать только во время полных солнечных затмений в виде серебристо-жемчужного сияния вокруг закрытого Луной диска С. (см. т. 9, вклейка к стр. 384—385). В короне хорошо выделяются детали её структуры: шлемы, опахала, корональные лучи и полярные щёточки. После изобретения коронографа солнечную корону стали наблюдать и вне затмений. Общая форма короны меняется с фазой цикла солнечной активности: в годы минимума корона сильно вытянута вдоль экватора, в годы максимума она почти сферична. В белом свете поверхностная яркость солнечной короны в миллион раз меньше яркости центра диска С. Свечение её образуется в основном в результате рассеяния фотосферного излучения свободными электронами. Практически все атомы в короне ионизованы. Концентрация ионов и свободных электронов у основания короны составляет 10 9частиц в 1 см 3. Нагрев короны осуществляется аналогично нагреву хромосферы. Наибольшее выделение энергии происходит в нижней части короны, но благодаря высокой теплопроводности корона почти изотермична — температура понижается наружу очень медленно. Отток энергии в короне происходит несколькими путями. В нижней части короны основную роль играет перенос энергии вниз благодаря теплопроводности. К потере энергии приводит уход из короны наиболее быстрых частиц. Во внешних частях короны большую часть энергии уносит солнечный ветер — поток коронального газа, скорость которого растет с удалением от С. от нескольких км / сек у его поверхности до 450 км / сек на расстоянии Земли. температура в короне превышает 10 6К. В активных областях температура выше — до 10 7К. Над активными областями могут образовываться т. н. корональные конденсации, в которых концентрация частиц возрастает в десятки раз. Часть излучения внутренней короны — это линии излучения многократно ионизованных атомов железа, кальция, магния, углерода, кислорода, серы и др. химических элементов. Они наблюдаются и в видимой части спектра, и в ультрафиолетовой области. В солнечной короне генерируются радиоизлучение С. в метровом диапазоне и рентгеновское излучение, усиливающиеся во много раз в активных областях. Как показали расчёты, солнечная корона не находится в равновесии с межпланетной средой. Из короны в межпланетное пространство распространяются потоки частиц, образующие солнечный ветер. Между хромосферой и короной имеется сравнительно тонкий переходный слой, в котором происходит резкий рост температуры до значений, характерных для короны. Условия в нём определяются потоком энергии из короны в результате теплопроводности. Переходный слой является источником большей части ультрафиолетового излучения С. Хромосфера, переходный слой и корона дают всё наблюдаемое радиоизлучение С. В активных областях структура хромосферы, короны и переходного слоя изменяется. Это изменение, однако, ещё недостаточно изучено.
Читать дальшеИнтервал:
Закладка: