БСЭ БСЭ - Большая Советская Энциклопедия (УГ)
- Название:Большая Советская Энциклопедия (УГ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (УГ) краткое содержание
Большая Советская Энциклопедия (УГ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Различие между спиртовым брожением, с одной стороны, и гликолизом или молочнокислым брожением — с другой, выявляется на стадии превращения пировиноградной кислоты (пирувата): при спиртовом брожении в клетках под влиянием пируватдекарбоксилазы образуются CO 2и уксусный альдегид, восстанавливаемый алкогольдегидрогеназой в спирт:
При гликолизе или молочнокислом брожении пируват не подвергается анаэробному декарбоксилированию, а восстанавливается в молочную кислоту лактатдегидрогеназой: Пируватдегидрогеназа, представленная в животных тканях и микроорганизмах, осуществляет декарбоксилирование пирувата с использованием кислорода и образованием ацетилкофермента А (ацетил-КоА), вовлекая таким образом пируват в цикл трикарбоновых кислот (см. Трикарбоновых кислот цикл ) . Полное окисление пирувата происходит в результате троекратного декарбоксилирования и пятикратной дегидрогенизации в цикле трикарбоновых кислот: CH 3CO. COOH +
O 2® 3CO 2+ 2H 2O. Этот процесс выходит за рамки У. о., однако может рассматриваться как завершающая его стадия: окисление продукта гликолиза — пирувата.
Окислительное превращения углеводов (пентозный путь, или пентозофосфатный цикл) также начинаются с глюкозомоно-фосфата. Затем происходят последовательно 2 дегидрогеназные реакции: первая приводит к фосфоглюконовой кислоте, а вторая — к освобождению CO 2и образованию фосфопентозы. Важным итогом этих окислительных реакций является образование восстановленного никотинамидадениндинуклеотидфосфата— кофермента, участвующего во многих синтезах (например, в синтезе жирных кислот). Последующие реакции пентозного пути не связаны с использованием молекулярного кислорода и протекают в анаэробных условиях. При этом частично образуются вещества, характерные для 1-й стадии гликолиза (фруктозо-6-фосфат, фруктозодифосфат, фосфотриозы), а частично специфические для пентозного пути (седогептулозо-1-фосфат, седогептулозо-1,7-дифосфат, фосфопентозы, фосфотетроза, а, возможно, также фосфорные эфиры моносахаридов с 8 атомами углерода). Перечисленные вещества, характерные для гликолиза и пентозного пути, могут участвовать в обратимых реакциях взаимопревращения. Аналогичные реакции протекают и при фотосинтезе на стадиях образования фосфопентоз из фруктозо-6-фосфата и фосфотриозы (так называемый цикл Кальвина).
Пути биосинтеза углеводов представлены в живых клетках процессами глюконеогенеза и образованием высокомолекулярных полисахаридов. Процесс глюконеогенеза начинается с карбоксилирования пирувата при участии сложной по своей структуре ферментной системы пируваткарбоксилазы, приводящей к образованию щавелевоуксусной кислоты (ЩУК) с участием в качестве кофермента биотина. Стимулирует эту реакцию ацетил-КоЛ. В свою очередь, ЩУК подвергается в цитоплазме реакции декарбоксилирования под действием фермента фосфоенолпируваткарбоксикиназы. Благодаря этим реакциям преодолеваются энергетические барьеры и может образоваться из пирувата фосфоенолпировиноградная кислота — источник глюкозы. В фотосинтезирующих бактериях реализуется также и др. возможность: обращение цикла трикарбоновых кислот, восстановление при этом 3 молекул CO 2и образование фосфоенолпирувата. У растений и микроорганизмов в процессе глюконеогенеза важную роль играет глиоксилатный цикл.
Суммарное уравнение реакций, ведущих от пирувата к глюкозе, может быть записано следующим образом:
2CH 3COCOOH + 4АТФ + 2ГТФ + 2НАДН + 2H + 6H 2O ® глюкоза + 2НАД + 4АДФ + 2ГДФ + 6 неорганический фосфат
(где АТФ — аденозинтрифосфат, а ГТФ — гуанозинтрифосфат). Синтез олиго- и полисахаридов при участии различных гликозилтрансфераз осуществляется путём переноса гликозильного остатка с нуклеозиддифосфатсахара на моносахарид или же на концевой остаток моносахарида в молекуле поли- или олигосахарида. Таким образом, цепь, состоящая из гексозных остатков, удлиняется. Ветвление амилопектина или гликогена за счёт образования 1,6-связей осуществляется ферментом амило- (1,4—1,6) — трансгликозилазой, катализирующим перенос концевого фрагмента, состоящего из 6 или 7 гликозильных остатков, с конца главной цепи на гидроксильную группу 6-го углеродного атома остатка глюкозы какой-либо из цепей полисахарида.
Пути регуляции У. о. крайне разнообразны. На любых уровнях организации живого У. о. регулируется факторами, влияющими на активность ферментов, участвующих в реакциях У. о.: концентрацией субстратов и продуктов отдельных реакций, кислородным режимом, температурой, проницаемостью биологических мембран, определяющей возможность контакта между участниками реакций, концентрацией коферментов, необходимых для отдельных реакций, и т.д. У животных на всех стадиях синтеза и распада углеводов регуляция У. о. осуществляется с участием нервной системы и гормонов.
Лит.: Кретович В. Л., Основы биохимии растений, 5 изд., М., 1971; Шлегель Г., Общая микробиология, [пер. с нем.], М., 1972; Ленинджер А., Биохимия, пер. с англ., М., 1974. См. также ст. Обмен веществ и литературу при ней.
С. Е. Северин.
Углеводороды
Углеводоро'ды,класс органических соединений, молекулы которых состоят только из атомов углерода и водорода. В зависимости от строения различают ациклические, или алифатические, У., в молекулах которых атомы углерода связаны друг с другом в линейные или разветвленные цепи, и изоциклические, или карбоциклические, У., молекулы которых представляют собой кольца (циклы) из 3 и более атомов углерода. Эту группу У. делят на алициклические У. и ароматические углеводороды (см. также Ароматические соединения ) . Ациклические У. подразделяют на насыщенные углеводороды, содержащие только простые связи (родоначальник ряда — метан), и ненасыщенные углеводороды, в молекулах которых могут содержаться кратные связи — двойные и тройные, например одна двойная связь (см. Олефины ) , две двойные связи (см. Диеновые углеводороды ) , одна тройная связь (как, например, в ацетилене ) . Алициклические У. также могут быть насыщенными (см. Циклоалканы ) и ненасыщенными. У. образуют гомологические ряды, характеризующиеся закономерным изменением физических и химических свойств (см. также Органическая химия ) .
Читать дальшеИнтервал:
Закладка: