БСЭ БСЭ - Большая Советская Энциклопедия (УС)
- Название:Большая Советская Энциклопедия (УС)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (УС) краткое содержание
Большая Советская Энциклопедия (УС) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Последующие два десятилетия можно назвать годами реализации этих идей и технического усовершенствования У. з. ч. Для ускорения электронов более перспективными оказались линейные резонансные ускорители. Крупнейший из них, на 22 Гэв, был запущен в 1966 амер. физиком В. Панофским (США, Станфорд). Для протонов наибольшие энергии достигнуты в синхрофазотронах. В 1957 в СССР (Дубна) был запущен самый крупный для того времени синхрофазотрон — на энергию 10 Гэв. Через несколько лет в Швейцарии и США вступили в строй синхрофазотроны с сильной фокусировкой на 25—30 Гэв, а в 1967 в СССР под Серпуховом — синхрофазотрон на 76 Гэв, который в течение многих лет был крупнейшим в мире. В 1972 в США был создан синхрофазотрон на 200—400 Гэв. В СССР и США разрабатываются проекты ускорителей на 1 000—5 000 Гэв.
Современное развитие ускорителей идёт как по пути увеличения энергии ускоренных частиц, так и по пути наращивания интенсивности (силы тока) и длительности импульса ускоренного пучка, улучшения качества пучка (уменьшения разброса по энергии, поперечным координатам и скоростям). Параллельно с разработкой новых методов ускорения совершенствуются традиционные методы: исследуются возможности применения сверхпроводящих материалов (и соответствующей им техники низких температур) в магнитах и ускоряющих системах, позволяющих резко сократить размеры магнитных систем и энергетические расходы; расширяется область применения методов автоматического управления в ускорителях; ускорители дополняются накопительными кольцами, позволяющими исследовать элементарные взаимодействия во встречных пучках (см. Ускорители на встречных пучках ) . При этом особое внимание уделяется уменьшению стоимости установок.
II. Классификация ускорителей
У. з. ч. можно классифицировать по разным признакам. По типу ускоряемых частиц различают электронные ускорители, протонные ускорители и ускорители ионов.
По характеру траекторий частиц различают линейные ускорители (точнее, прямолинейные ускорители), в которых траектории частиц близки к прямой линии, и циклические ускорители, в которых траектории частиц близки к окружности (или спирали).
По характеру ускоряющего поля У. з. ч. делят на резонансные ускорители, в которых ускорение производится переменным высокочастотным (ВЧ) электромагнитным полем и для успешного ускорения частицы должны двигаться в резонанс с изменением поля, и нерезонансные ускорители, в которых направление поля за время ускорения не изменяется. Последние в свою очередь делятся на индукционные ускорители, в которых электрическое ускоряющее поле создаётся за счёт изменения магнитного поля (эдс индукции), и высоковольтные ускорители, в которых ускоряющее поле обусловлено непосредственно приложенной разностью потенциалов.
По механизму, обеспечивающему устойчивость движения частиц в перпендикулярных к орбите направлениях (фокусировку), различают ускорители с однородной фокусировкой, в которых фокусирующая сила постоянна вдоль траектории (по крайней мере, по знаку), и ускорители со знакопеременной фокусировкой, в которых фокусирующая сила меняет знак вдоль траектории, т. е. чередуются участки фокусировки и дефокусировки. В применении к некоторым типам циклических ускорителей (синхротрон и синхрофазотрон) вместо терминов «однородная» и «знакопеременная» фокусировка пользуются терминами «слабая» и «сильная» («жёсткая») фокусировка.
Резонансные циклические ускорители могут быть классифицированы далее по характеру управляющего — «ведущего» — магнитного поля и ускоряющего электрического поля: ускорители с постоянным и с переменным во времени магнитным полем и соответственно ускорители с постоянной и с переменной частотой ускоряющего поля. Приведённая классификация (табл. 1) не охватывает ускорителей со встречными пучками и ускорителей, использующих коллективные методы ускорения. Первый тип является своеобразной разновидностью перечисленных в табл. 1 ускорителей: пучки частиц от ускорителей того или иного типа направляют навстречу друг другу. Второй тип отличается от всей совокупности описанных ускорителей по источнику ускоряющего поля.
Табл. 1. — Классификация ускорителей заряженных частиц
Тип траектории | Характер ускоряющего поля | Магнитное поле | Частота ускоряющего поля | Фокусировка | Название | Ускоряемые частицы |
Окружность или спираль | Циклические ускорители | |||||
Нерезонансный, индукционный | Переменное | — | Однородная | Бетатрон | Электроны | |
Резонансный | Постоянное | Постоянная | « | Циклотрон Микротрон | Протоны (или ионы) Электроны | |
« | « | Знакопеременная | Изохронный циклотрон Секторный микротрон | Протоны Электроны | ||
« | Переменная | Однородная Знакопеременная | Фазотрон Секторный фазотрон | Протоны | ||
Переменное | Постоянная | Однородная Знакопеременная | Синхротрон слабофокусирующий Синхротрон сильнофокусирующий | Электроны | ||
« | Переменная | Однородная Знакопеременная | Синхрофазотрон слабофокусирующий Синхрофазотрон сильнофокусирующий | Протоны | ||
Прямая | Линейные ускорители | |||||
Hepeзонансный, электростатический | — | — | — | Электростатический ускоритель, каскадный ускоритель | Протоны, электрон ны | |
Нерезонансный, индукционный | — | — | — | Линейный индукционный ускоритель | Электроны | |
Резонансный | — | Постоянная | — | Линейный резонансный ускоритель | Протоны, электро-i ны |
III. Принцип действия резонансных ускорителей
В резонансном ускорителе непрерывное ускорение происходит благодаря тому, что в ускоряющие электроды частица всё время попадает в ускоряющую фазу поля (т. е. когда электрическое поле направлено в сторону движения частиц). Идеальная, т. н. равновесная, частица всё время попадает в одну и ту же фазу — равновесную фазу.
В циклическом ускорителе период обращения Т частицы по орбите связан со средним радиусом орбиты соотношением:
(1)
(u — скорость частицы). Средний радиус орбиты равен
(2)
где Е = mc 2 — полная релятивистская энергия частицы массы m, равная сумме энергии покоя частицы E 0= m 0 с 2и её кинетической энергии W ( m 0 — масса покоя частицы, с — скорость света), е — заряд частицы, < В > — среднее значение индукции магнитного поля; поэтому период обращения связан с энергией частицы соотношением:
Читать дальшеИнтервал:
Закладка: